Windows™ HLLAPI Specification

Version 1.1

Greg Millard
Digital Communications Associates, Inc.
Sean Grinslade
Attachmate Corporation
David Fuchs
Wall Data Incorporated
Preston Sights
Synapse Communications
Michael Lee
NetSoft
Gordon Mangione
Microsoft Corporation
Microsoft Corporation

The specification was developed by the companies listed below (collectively, “Developers”). Although it is publicly available and is not confidential, the specification is still protected by copyright laws. Additional copies of the specification can be obtained on the MSDR forum on CompuServe® Information Services in Library 2.

This document is for informational purposes only. THE DEVELOPERS DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT. THE DEVELOPERS MAKE NO WARRANTY OR REPRESENTATION WITH RESPECT TO THIS SPECIFICATION, ITS QUALITY, PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. THE DEVELOPERS SHALL HAVE NO LIABILITY FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RESULTING FROM THE USE OR MODIFICATION OF THIS SPECIFICATION.

© 1993 Microsoft Corporation, Digital Communications Associates, Inc., Attachmate Corporation, Wall Data Incorporated, Synapse Communications, and NetSoft. All rights reserved.

Microsoft, MS and MS-DOS are registered trademarks and Windows is a trademark of Microsoft Corporation in the USA and other countries.

U.S. Patent No. 4955066

Document No. SY53185-10/93

Printed in the United States of America.

CompuServe is a registered trademark of CompuServe, Inc.

DEC and VAX are registered trademarks of Digital Equipment Corporation.

IBM and OS/2 are registered trademarks of International Business Machines Corporation.

Intel is a registered trademark of Intel Corporation.

Contents

Chapter 1 Introduction 1

Windows HLLAPI Overview 1

IBM EHLLAPI 1

Microsoft Windows Graphical Environment and
Windows Specific Extensions 2

Chapter 2 Programming with Windows HLLAPI 3

WinHLLAPI Installation Checking 3

Byte Ordering 3

Deviation from IBM EHLLAPI 3

Window Handle Passed for Each Async Call 4

Pointers 4

Blocking Routines 4

Chapter 3 Windows HLLAPI Functions 5

Windows Calls 6

Prerequisite Calls 7

5250 Emulation Support 8

Change Presentation Space Window Name—Function 105 10

Connect Presentation Space — Function 1 12

Connect Window Services—Function 101 13

Convert Position / RowCol—Function 99 14

Copy Field to String—Function 34 15

Copy OIA—Function 13 17

OIA Group Indicator Meanings for 5250 Sessions 22

Copy Presentation Space—Function 5 25

Copy Presentation Space to String—Function 8 27

Copy String to Field—Function 33 29

Copy String to Presentation Space—Function 15 31

Disconnect Presentation Space—Function 2 33

Disconnect Window Services—Function 102 34

Find Field Length—Function 32 35

Find Field Position—Function 31 37

Get Key—Function 51 39

Pause—Function 18 41

Post Intercept Status—Function 52 42

Query Close Intercept—Function 42 43

Query Cursor Location—Function 7 44

Query Field Attribute—Function 14 45

Query Host Update—Function 24 46

Query Session Status—Function 22 47

Query Sessions—Function 10 49

Query System—Function 20 50

Query Window Coordinates—Function 103 51

Receive File—Function 91 52

Asynchronous Mode 53

Release—Function 12 54

Reserve—Function 11 55

Reset System—Function 21 56

Search Field—Function 30 57

Search Presentation Space—Function 6 59

Send File—Function 90 61

Send Key—Function 3 63

Set Cursor—Function 40 67

Set Session Parameters—Function 9 68

STRLEN/STREOT 70

EOT=c 70

SRCHALL/SRCHFROM 71

SRCHFRWD/SRCHBKWD 71

NOATTRB/ATTRB 71

FPAUSE/IPAUSE 72

NOQUIET/QUIET 72

TIMEOUT=0/TIMEOUT=c 72

ESC=c 73

AUTORESET/NORESET 73

TWAIT/LWAIT/NWAIT 74

TRON/TROFF 74

EAB/NOEAB 74

XLATE/NOXLATE 75

CONLOG/CONPHYS 75

OLDOIA/NEWOIA 75

NOCFGSIZE/CFGSIZE 75

DISPLAY/NODISPLAY 76

WRITE_SUPER/WRITE_WRITE/WRITE_READ/WRITE_NONE/SUPER_WRITE/READ_WRITE 76

NOKEY/KEY$nnnnnnnn 77

Start Close Intercept—Function 41 78

Start Host Notification—Function 23 80

Start Keystroke Intercept—Function 50 82

Stop Close Intercept—Function 43 84

Stop Host Notification—Function 25 85

Stop Keystroke Intercept—Function 53 86

Wait—Function 4 87

Window Status—Function 104 89

Chapter 4 Extensions for the Windows Environment 93

WinHLLAPIAsync() 94

Windows HLLAPI Supplier Notes 94

WinHLLAPICleanup() 95

Windows HLLAPI Supplier Notes 95

WinHLLAPIIsBlocking() 96

Windows HLLAPI Supplier Notes 96

WinHLLAPICancelAsyncRequest() 97

WinHLLAPICancelBlockingCall() 98

WinHLLAPIStartup() 99

Windows HLLAPI Supplier Notes 101

WinHLLAPISetBlockingHook() 102

Windows HLLAPI Supplier Notes 103

WinHLLAPIUnhookBlockingHook() 104

Appendix A WHLLAPI.H - Definitions / Declarations for the Windows HLLAPI Specification 105

Appendix B Attributes 111

Character Attributes 112

Character Color Attributes 113

Field Attributes 114

Appendix C Extended Windows HLLAPI Functions 117

Allocate Communications Buffer—Function 123 118

Connect Structured Fields—Function 120 120

Disconnect Structured Fields—Function 121 123

Free Communications Buffer—Function 124 125

Get Request Completion—Function 125 126

Lock Presentation Space API—Function 60 129

Lock Window Services API—Function 61 130

Query Communication Buffer Size—Function 122 131

Read Structured Fields—Function 126 133

Storage Manager—Function 17 138

Get Storage 139

Free Storage 139

Free All Storage 140

Query Free Storage 140

Write Structured Fields—Function 127 141

Appendix D Query Reply Data Structures for Windows HLLAPI 147

The DDM Query Reply 148

DDM Application Name Self-Defining Parameter 148

PCLK Protocol Controls Self-Defining Parameter 149

Base DDM Query Reply Formats 149

The IBM Auxiliary Device Query Reply 151

Direct Access Self-Defining Parameter 153

PCLK Protocol Controls Self-Defining Parameter 153

The OEM Auxiliary Device Query Reply 154

Direct Access Self-Defining Parameter 154

PCLK Protocol Controls Self-Defining Parameter 155

The Cooperative Processing Requester Query Reply 156

The Product Defined Query Reply 157

Direct Access Self-Defining Parameter 158

The Document Interchange Architecture Query Reply 159

Direct Access Self-Defining Parameter 160

Chapter 1
Introduction

Windows HLLAPI Overview

Windows™ HLLAPI defines a standard and consistent IBM® EHLLAPI-style API for the 16- and 32‑bit versions of the Microsoft® Windows graphical environment. It encompasses both familiar IBM EHLLAPI-style routines and a set of Windows-specific extensions designed to allow the programmer to take advantage of the message-driven nature of the Windows graphical environment.

This API has been designed to provide a standard to which application developers can program and network software vendors can conform. These API details constitute documentation for application software developers and a specification for network software vendors.

Network software that conforms to this Windows HLLAPI specification will be considered “Windows HLLAPI Compliant.” To be Windows HLLAPI Compliant, a vendor must implement 100% of this Windows HLLAPI specification (functions listed in Appendix C - Extended Windows HLLAPI Functions are not required for compliancy). Suppliers of such interfaces shall be referred to as “Windows HLLAPI Suppliers.”

Applications that are capable of exploiting any Windows HLLAPI implementation will be considered as having a “Windows HLLAPI Interface” and will be referred to as “Windows HLLAPI Applications.”

IBM EHLLAPI

Windows HLLAPI has been built on the de facto IBM EHLLAPI programming standard. Windows HLLAPI is intended to provide maximum programming familiarity and to allow the simplified porting of existing EHLLAPI-based source code. The Windows HLLAPI is consistent with release 1.0 of IBM Extended Services for OS/2® EHLLAPI Programming Reference.

Microsoft Windows Graphical Environment and Windows Specific Extensions

This API has been designed for ALL implementations and versions of the Windows environment from and including version 3.0. It thus provides for Windows HLLAPI implementations and Windows HLLAPI applications in both 16- and 32‑bit operating environments.

Windows HLLAPI makes provisions for multithreaded Windows-based processes, where a process contains one or more threads of execution. In the Win16 non-multithreaded world, a task corresponds to a process with a single thread. All references to threads in this document refer to actual “threads” in multithreaded Windows environments. In non-multithreaded environments (such as version 3.0), use of the term thread refers to a Windows process.

The extensions to the Windows environment included in Windows HLLAPI are provided for maximum programming compatibility among Windows version 3.x and Windows NT™ and optimum application performance in both environments.

Chapter 2
Programming with Windows HLLAPI

WinHLLAPI Installation Checking

To detect the presence of any Windows HLLAPI implementations on a system, an application that has been linked with the Windows HLLAPI Import Library can attempt to call the WinHLLAPIStartup() routine. Alternately, an application can examine the $PATH environment variable to search for instances of Windows HLLAPI API implementations (WHLLAPI.DLL). For each instance, it can issue a LoadLibrary() call and use the WinHLLAPIStartup() routine to discover implementation-specific data.

This version of the Windows HLLAPI API specification does not attempt to address explicitly the issue of multiple stacks/multiple concurrent Windows HLLAPI implementations. Nothing in the specification should be interpreted as restricting multiple WinHLLAPI DLLs from being present and from being used concurrently by one or more Windows HLLAPI application.

Byte Ordering

The Intel® byte ordering is like that of the DEC® VAX® and so differs from the Internet and 68000-type processor byte ordering. Take care in your programming to ensure the correct orientation.

Deviation from IBM EHLLAPI

There are a few limited instances where Windows HLLAPI diverts from strict adherence to the IBM EHLLAPI conventions. This deviation is due to the nature of the Windows graphical environment and the way it differs from other HLLAPI platforms.

Error constants are consistent with IBM EHLLAPI to maintain backward compatibility with existing software.

Window Handle Passed for Each Async Call

A Window handle has been added as the first parameter passed to the WinHLLAPIAsync entry point. This allows the WinHLLAPIAsync implementation to distinguish between HLLAPI applications.

Pointers

All pointers used by applications with WHLLAPI should be FAR.

Blocking Routines

Although blocking functions are supported with Windows HLLAPI, you should not use them. Instead you should use the WinHLLAPIAsync function in conjunction with a WinHLLAPIAsync Windows message.

Chapter 3
Windows HLLAPI Functions

Windows HLLAPI functions are requested using the appropriate parameter within the WinHLLAPI() call, and by specifying the function constant (or number equivalent) and the call parameters specific to that function. This chapter details the supported Windows HLLAPI functions, describing each function and their corresponding parameters and return codes. The supported functions are:

1
Connect Presentation Space

2
Disconnect Presentation Space

3
Send Key

4
Wait

5
Copy Presentation Space

6
Search Presentation Space

7
Query Cursor Location

8
Copy Presentation Space to

String

9
Set Session Parameters

10
Query Sessions

11
Reserve

12
Release

13
Copy OIA

14
Query Field Attribute

15
Copy String to Presentation Space

18
Pause

20
Query System

21
Reset System

22
Query Session Status

23
Start Host Notification

24
Query Host Update

25
Stop Host Notification

30
Search Field

31
Find Field Position

32
Find Field Length

33
Copy String to Field

34
Copy Field to String

40
Set Cursor Position

41
Start Close Intercept

42
Query Close Intercept

43
Stop Close Intercept

50
Start Keystroke Intercept

51
Get Key

52
Post Intercept Status

53
Stop Keystroke Intercept

90
Send File

91
Receive File

99
Convert Position / RowCol

101
Connect Window Services

102
Disconnect Window Services

103
Query Window Coordinates

104
Window Status

105
Change Switch List LT Name

106
Change PS Window Name

Windows Calls

The WinHLLAPI() call requires you to specify four parameters in every call and has the following format:

extern VOID FAR PASCAL WinHLLAPI()
LPWORD lpwFunction,

/* Function name */

LPBYTE lpbyString,

/* String pointer */

LPWORD lpwLength,

/* String (data) length */

LPWORD lpwReturnCode);

/* Return code */

Call Parameter Definitions

The parameters used in the WinHLLAPI function calls are:

	

Prerequisite Calls

Most Windows HLLAPI functions require a prerequisite callSYMBOL 190 \f "Symbol"another function that must be called and successfully completed before the desired call can be issued. The following table lists the Windows HLLAPI functions and their prerequisite calls. “None” indicates that the function has no prerequisite call.

	

	

Note

Some functions use the Return Code to pass a value to the call. This value is the Host session presentation space position. Although the parameter is listed as lpwReturnCode in the call syntax, the function listings in this Chapter refer to this parameter as PS Position on the call and Return Code on the return.

5250 Emulation Support

Most Windows HLLAPI functions are supported for both 3270 and 5250 emulators. The following functions are not supported for 5250 emulation:

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Change Presentation Space Window Name—Function 105

This function allows the application to specify a new name for the presentation space window or reset the presentation space window to the default name.

Prerequisite Functions

Connect Window Services (function 101).

Function Call

WinHLLAPI(CHANGEPSNAME,lpbyString,lpwLength,lpwReturnnCode)

Call Parameters

	

Return Codes

	

Remarks

A string is ended at the first NULL character found. The NULL character overrides the specified string length. If the NULL character is not at the end of the specified length, the last byte at the specified length is replaced by a NULL character and the remainder of the Data String is lost. If the NULL character is found before the specified length, the string is truncated at that point and the remainder of the Data String is lost. This function is not supported for 5250 emulation.

Connect Presentation Space — Function 1

This function establishes a connection between a specified presentation space (session) on the Host and your Windows HLLAPI application.

Prerequisite Functions

None.

Function Call

WinHLLAPI(CONNECTPS,lpbyString,lpwLength,lpwReturnnCode)
Call Parameters

	

Return Codes

	

Remarks

When using the WinHLLAPI() call, you can only make connected sessions available to other Windows HLLAPI applications by issuing a Disconnect Presentation Space call. Issuing a Reset System call causes your Windows HLLAPI application to disconnect from all Host sessions. Alternatively, your Windows HLLAPI application can share the Presentation Space by setting the appropriate read/write parameters in the Set Session Parameters call (Function 9).

Connect Window Services—Function 101

This function allows the application to manage the presentation space windows. Only one Windows HLLAPI application at a time can be connected to a presentation space for window services.

Prerequisite Functions

None.

Function Call

WinHLLAPI(CONNECTWINDOWSERVICES,lpbyString,

lpwLength,lpwReturnnCode)
Call Parameters

	

Return Codes

	

Remarks

A Windows HLLAPI application may connect to more than one presentation space concurrently for window services. More than one Windows HLLAPI application can share a presentation space, but the applications must synchronize session usage. This function is not supported for 5250 emulation.

Convert Position / RowCol—Function 99

This function converts a Host session presentation space position into row and column values for the PC display or converts PC display row and column values into a Host session presentation space position.

Prerequisite Functions

None.

Function Call

WinHLLAPI(CONVERT,lpbyString,lpwLength,lpwReturnnCode)
Call Parameters

	

Return Parameters

	

Return Codes

	

Remarks

If you need to determine the number of rows and columns that a Host session presentation space supports, use Query Session Status (function 22).

Copy Field to String—Function 34

This function copies the contents of a specified field in the Host session presentation space to a string. You can use Copy Field to String for either protected or unprotected fields.

Prerequisite Functions

Connect Presentation Space (function 1).

Function Call

WinHLLAPI(COPYFIELDTOSTRING,lpbyString,lpwLength,

lpwReturnnCode)

Call Parameters

	

Return Parameters

	

Return Codes

	

Remarks

Position in the Host session presentation space is determined by starting in the upper left corner of the screen display (row 1, column 1). At the end of each screen display row, the next Host session presentation space position is column 1 of the following screen display row. This process continues until the end of the Host session presentation space (screen display) is reached.

This function is affected by the session options EAB/NOEAB, ATTRB/NOATTRB, DISPLAY/NODISPLAY, and XLATE/NOXLATE. See Set Session Parameters (function 9) for details. These session options have the following effect:

	

See Appendix B - Attributes for descriptions of character, character color, and field attributes

Information about the field to copy can be obtained with Find Field Position (function 31) and Find Field Length (function 32). The field is copied into Data String beginning with the first byte of the field and ends when one of the following occurs:

SYMBOL 117 \f "MSIcons" \s 9.5 \h
The end of the field is reached.

SYMBOL 117 \f "MSIcons" \s 9.5 \h
The end of Data String is reached.

Copy OIA—Function 13

This function returns the Host session Operator Information Area (OIA).

Prerequisite Functions

Connect Presentation Space (function 1).

Function Call

WinHLLAPI(COPYOIA,lpbyString,lpwLength,lpwReturnnCode)

Call Parameters

	

Return Parameters

	

Return Codes

	

Remarks

The 103-byte string returned in Data String contains three areas of information, as follows:

Note

The 5250 OIA image is always returned in ASCII. The 3270 OIA image will be returned in one of the following states depending on Set Session Parameter (9):

OLDOIA
OIA image returned in 3270 PC format.

NEWOIA
OIA image returned in ASCII format.

3270 Host Presentation Space Character Table

[image: image1.png]] SN S NS L =1
o[t |k |=ala 2 fm [a]o]s | e
Bl <=gaforfor[v | |+ |r [+ [F a2 =
Sl w1 oen [t o[[|ai]ert]m [m
&loje |- o> [x[x|> M|w (= pa|o|n e
Zc|mlolawlujofzEn[=&[DE =
&l olcla|+|3|>[3]x|P nlw|alm) o)
& ®|0| o|o| 0|+ ||| [|x|—| €| c
Zfx s o | e fur | fo b [fuu [|
& jul-lola o[> wlw]-[o]>
&[0} [o[a]w|w-|oa]w|o}-|o
Zolo}-o|almlo ol PP
e[1| ||]+ |1 e |-
&Kle|[—|nm|«no @ ||| @3] |
EENSONEE EoErRnED
EEEEEEE vl lm el
EERREMERE EHEEEERE

OIA Group Indicator Meanings for 3270 Sessions

Group 1: Online and screen ownership

	

Group 2: Character selection

	

Group 3: Shift state

	

Group 4: PSS group 1

1 byte (Data String position 85) not used (reserved)
Group 5: Highlight group 1

	

Group 6: Color group 1

	

Group 7: Insert

	

Group 8: Input inhibited

5 bytes (Data String positions 89-93) apply to Data String position 10 (except where noted)

	

	

	

	

	

Group 9: PSS group 2

1 byte (Data String position 94) not used (reserved)
Group 10: Highlight group 2

	

Group 11: Color group 2

	

Group 12: Communication error reminder applies to Data String position 23

	

Group 13: Printer status applies to Data String position 62

	

Group 14: Graphics

1 byte (Data String position 99) not used (reserved)
Group 15: Not used

1 byte (Data String position 100) not used (reserved)
Group 16: Autokey play/record status

1 byte (Data String position 101) not used (reserved)
Group 17: Autokey abort/pause status

1 byte (Data String position 102) not used (reserved)
Group 18: Enlarge state

1 byte (Data String position 103) not used (reserved)

OIA Group Indicator Meanings for 5250 Sessions

Group 1: Online and screen ownership

	

Group 2: Character selection

	

Group 3: Shift state

	

Group 4: PSS group 1

1 byte (Data String position 85) not used (reserved)
Group 5: Highlight group 1

1 byte (Data String position 86) not used (reserved)
Group 6: Color group 1

1 byte (Data String position 87) not used (reserved)
Group 7: Insert

	

Group 8: Input inhibited

5 bytes (Data String positions 89-93) apply to Data String position 58 (except where noted)

	

	

	

	

	

Group 9: PSS group 2

1 byte (Data String position 94) not used (reserved)
Group 10: Highlight group 2

1 byte (Data String position 95) not used (reserved)
Group 11: Color group 2

1 byte (Data String position 96) not used (reserved)
Group 12: Communication error reminder applies to Data String position 29

	

Group 13: Printer status

1 byte (Data String position 98) not used (reserved)
Group 14: Graphics

1 byte (Data String position 99) not used (reserved)
Group 15: Not used

1 byte (Data String position 100) not used (reserved)
Group 16: Autokey play/record status

1 byte (Data String position 101) not used (reserved)
Group 17: Autokey abort/pause status

1 byte (Data String position 102) not used (reserved)
Group 18: Enlarge state

1 byte (Data String position 103) not used (reserved)
Copy Presentation Space—Function 5

This function copies the contents of the current Host session’s presentation space into a string buffer.

Prerequisite Functions

Connect Presentation Space (function 1).

Function Call

WinHLLAPI(COPYPS,lpbyString,lpwLength,lpwReturnnCode)
Call Parameters

	

Return Parameters

	

Return Codes

	

Remarks

This function copies the entire Host session presentation space to the supplied string. To copy only a portion of the presentation space, use Copy Presentation Space to String (function 8).

This function translates characters from EBCDIC to ASCII. The translation depends on the setting of the following session options:

	

See Appendix B - Attributes for descriptions of character, character color, and field attributes

Copy Presentation Space to String—Function 8

This function copies all or part of the Host session presentation space into a string buffer.

Prerequisite Functions

Connect Presentation Space (function 1).

Function Call

WinHLLAPI(COPYPSTOSTR,lpbyString,lpwLength,lpwReturnnCode)
Call Parameters

	

Return Parameters

	

Return Codes

	

Remarks

PS Position in the Host session presentation space is determined by starting in the upper left corner of the screen display (row 1, column 1). At the end of each screen display row, the next Host session presentation space position is column 1 of the following screen display row. This process continues until the end of the Host session presentation space (screen display) is reached.

Character translation from EBCDIC to ASCII is performed by the Copy Presentation Space to String function. The translation depends on the setting of the following session options:

	

See Appendix B - Attributes for descriptions of character, character color, and field attributes

Copy String to Field—Function 33

This function copies a string into the specified field in the Host session presentation space.

Prerequisite Functions

Connect Presentation Space (function 1).

Function Call

WinHLLAPI(COPYSTRINGTOFIELD,lpbyString,lpwLength,

lpwReturnnCode)
Call Parameters

	

Return Codes

	

Remarks

Position in the Host session presentation space is determined by starting in the upper left corner of the screen display (row 1, column 1). At the end of each screen display row, the next Host session presentation space position is column 1 of the following screen display row. This process continues until the end of the Host session presentation space (screen display) is reached.

This function is affected by the session options STRLEN/STREOT, EOT=c and EAB/NOEAB. See Set Session Parameters (function 9) for details on these session options.

Data String is copied to the specified field, starting with the first position of the field, until one of the following occurs:

SYMBOL 117 \f "MSIcons" \s 9.5 \h
The end of the field is encountered.

SYMBOL 117 \f "MSIcons" \s 9.5 \h
If the EOT session option is set and an EOT is encountered.

SYMBOL 117 \f "MSIcons" \s 9.5 \h
If the EOT session option is not set and the number of characters specified by Data Length have been copied.

Copy String to Presentation Space—Function 15

This function copies an ASCII string directly to a specified position in the Host session presentation space.

Prerequisite Functions

Connect Presentation Space (function 1)

Function Call

WinHLLAPI(COPYSTRTOPS,lpbyString,lpwLength,lpwReturnnCode)

Call Parameters

	

Return Codes

	

Remarks

Position in the Host session presentation space is determined by starting in the upper left corner of the screen display (row 1, column 1). At the end of each screen display row, the next Host session presentation space position is column 1 of the following screen display row. This process continues until the end of the Host session presentation space (screen display) is reached.

This function is affected by the session options STRLEN/STREOT and EOT=c. If the session option STREOT has been specified, the copy string ends when an EOT is encountered in Data String. See Set Session Parameters (9) for details.

This function is similar to, but faster than, Send Key (3). However, keyboard mnemonics that can be sent with Send Key cannot be sent with this function.

Data String cannot be larger than the maximum size of the Host session presentation space.

5250 emulators supports a Presentation Space of 24 rows by 80 columns. When an error message from the host or when the operator presses the SysReq key, a 25th row is displayed. When the row 25 is displayed, it is a valid area for this function.

Disconnect Presentation Space—Function 2

This function disconnects a Host session from your Windows HLLAPI session.

Prerequisite Functions

Connect Presentation Space (function 1).

Function Call

WinHLLAPI(DISCONNECTPS,lpbyString,lpwLength,lpwReturnnCode)
Call Parameters

	

Return Codes

	

Remarks

After calling this function, other functions that require a connected session are not valid and should not be called. The Windows HLLAPI application should disconnect from all connected sessions before exiting.

This function does not reset the session parameters to their defaults. In order to reset the default values, the Windows HLLAPI application must issue a Reset System (function 21).

Disconnect Window Services—Function 102

This function disconnects window services between a Windows HLLAPI application and a specified Windows HLLAPI session.

Prerequisite Functions

Connect Window Services (function 101).

Function Call

WinHLLAPI(DISCONNECTWINDOWSERVICES,lpbyString,

lpwLength,lpwReturnnCode)
Call Parameters

	

Return Code

	

Remarks

After calling this function, other functions that require a connected session for window services are not valid and should not be called. The Windows HLLAPI application should disconnect from all sessions that have been connected for window services before exiting. This function is not supported for 5250 emulation.

Find Field Length—Function 32

This function determines the length of a specified field in the Host session presentation space. You can use Find Field Length for either protected or unprotected fields but only in a field-formatted host presentation space.

Prerequisite Functions

Connect Presentation Space (function 1).

Function Call

WinHLLAPI(FINDFIELDLENGTH,lpbyString,lpwLength,

lpwReturnnCode)
Call Parameters

	

Return Parameters

	

Return Codes

	

Remarks

Position in the Host session presentation space is determined by starting in the upper left corner of the screen display (row 1, column 1). At the end of each screen display row, the next Host session presentation space position is column 1 of the following screen display row. This process continues until the end of the Host session presentation space (screen display) is reached.

5250 emulators supports a Presentation Space of 24 rows by 80 columns. When an error message from the host or when the operator presses the SysReq key, a 25th row is displayed. When the row 25 is displayed, it is a valid area for this function.

Find Field Position—Function 31

This function determines the starting position of a field in the Host session presentation space. You can use Find Field Position for either protected or unprotected fields but only in a field-formatted host presentation space.

Prerequisite Functions

Connect Presentation Space (function 1).

Function Call

WinHLLAPI(FINDFIELDPOSITION,lpbyString,lpwLength,

lpwReturnnCode)
Call Parameters

	

Return Parameters

	

Return Codes

	

Remarks

Position in the Host session presentation space is determined by starting in the upper left corner of the screen display (row 1, column 1). At the end of each screen display row, the next Host session presentation space position is column 1 of the following screen display row. This process continues until the end of the Host session presentation space (screen display) is reached.

5250 emulators supports a Presentation Space of 24 rows by 80 columns. When an error message from the host or when the operator presses the SysReq key, a 25th row is displayed. When the row 25 is displayed, it is a valid area for this function.

Get Key—Function 51

This function allows your Windows HLLAPI application to intercept keystrokes from Host sessions that have keystroke intercept enabled, and to process those keystrokes.

Prerequisite Functions

Start Keystroke Intercept (function 50).

Function Call

WinHLLAPI(GETKEY,lpbyString,lpwLength,lpwReturnnCode)
Call Parameters

	

Return Parameters

	

Return Codes

	

	

Remarks

This function is affected by the session options ESC=c and NWAIT/LWAIT/TWAIT. See Set Session Parameters (function 9) for details. Of particular importance is the ESC=c session option: the escape character may be set to something other than the default of the at sign (@), which is used in the keystroke examples.

Keystrokes entered by the user are queued by WinHLLAPI. Use this function to read the keystrokes from the queue one at a time. You can then use Send Key (function 3) to pass the original keystrokes and/or any other keystrokes you want to send to the Host session presentation space.

The special key modifiers that can be returned indicate which key modifier is active:

The 3270 function key codes are defined under Send Key (function 3).

Returned Data String Examples

Pause—Function 18

This function causes your application to wait for a specified amount of time.

Prerequisite Functions

None.

Function Call

WinHLLAPI(PAUSE,lpbyString,lpwLength,lpwReturnnCode)

Call Parameters

	

Return Codes

	

Remarks

You should use the Windows environment timer facility, WM_TIMER, instead of timing loops to wait for an event to occur. Note that by calling Start Host Notification (function 23) before this function, a Host event can terminate the Pause. When this happens, call Query Host Update (function 24) to determine which session had the update and the type of update.

This function is affected by the FPAUSE/IPAUSE session options. See Set Session Parameters (function 9) for details. If IPAUSE is set, the pending Host event satisfies the Pause call until Query Host Update (function 24) is completed.

Post Intercept Status—Function 52

This function notifies WinHLLAPI that a keystroke obtained with Get Key (function 51) has been accepted or rejected. If rejected, a beep is generated.

Prerequisite Functions

Start Keystroke Intercept (function 50).

Function Call

WinHLLAPI(POSTINTERCEPTSTATUS,lpbyString,lpwLength,

lpwReturnnCode)
Call Parameters

	

Return Codes

	

Query Close Intercept—Function 42

This function allows the application to determine if the user selected to close the emulator program.

Prerequisite Functions

Start Close Intercept (function 41).

Function Call

WinHLLAPI(QUERYCLOSEINTERCEPT,lpbyString,lpwLength,

lpwReturnnCode)
Call Parameters

	

Return Codes

	

Remarks

This function is not supported for 5250 emulation.

Query Cursor Location—Function 7

This function determines the location of the cursor in the Host session presentation space.

Prerequisite Functions

Connect Presentation Space (function 1).

Function Call

WinHLLAPI(QUERYCURSORLOC,lpbyString,lpwLength,

lpwReturnnCode)
Call Parameters

	

Return Parameters

	

Return Codes

	

Remarks

5250 emulators supports a Presentation Space of 24 rows by 80 columns. When an error message from the host or when the operator presses the SysReq key, a 25th row is displayed. When the row 25 is displayed, it is a valid area for this function.

Query Field Attribute—Function 14

This function returns the attribute byte of the field containing the specified position in the Host session presentation space.

Prerequisite Functions

Connect Presentation Space (function 1).

Function Call

WinHLLAPI(QUERYFIELDATTRIBUTE,lpbyString,lpwLength,

lpwReturnnCode)
Call Parameters

	

Return Parameters

	

Return Codes

	

Remarks

Position in the Host session presentation space is determined by starting in the upper left corner of the screen display (row 1, column 1). At the end of each screen display row, the next Host session presentation space position is column 1 of the following screen display row. This process continues until the end of the Host session presentation space (screen display) is reached.

You must examine the attribute byte to determine all of the current field attributes. See Appendix B - Attributes for descriptions of field attributes

Query Host Update—Function 24

This function determines if the presentation space, Operator Information Area (OIA), or both, of the specified Host session have been updated since one of the following occurs:

SYMBOL 117 \f "MSIcons" \s 9.5 \h
Start Host Notification (function 23) was called.

SYMBOL 117 \f "MSIcons" \s 9.5 \h
The previous call of this function.

Prerequisite Functions

Start Host Notification (function 23).

Function Call

WinHLLAPI(QUERYHOSTUPDATE,lpbyString,lpwLength,

lpwReturnnCode)
Call Parameters

	

Return Codes

	

Query Session Status—Function 22

This function accesses the status of a specified session.

Prerequisite Functions

None.

Function Call

WinHLLAPI(QUERYSESSIONSTATUS,lpbyString,lpwLength,

lpwReturnnCode)
Call Parameters

	

Return Parameters

	

	

Return Codes

	

Remarks

The rows and columns returned in Data String (positions 12-13 and 14-15) are the number of rows and columns that correspond to the Model type.

Query Sessions—Function 10

This function returns the number of Host screen sessions that are active, and a string containing information on each of the Host screen sessions. Host printer sessions are not supported.

Prerequisite Functions

None.

Function Call

WinHLLAPI(QUERYSESSIONS,lpbyString,lpwLength,lpwReturnnCode)

Call Parameters

	

Return Parameters

	

Return Codes

	

Remarks

The return value of Data Length is set when the Return Code is 0 or 2. If you receive a Return Code of 2, use Data Length to recalculate the necessary value for the size of Data String (and the value for Data Length on the call).

Depending on the Session parameter specified the presentation size will vary:

Query System—Function 20

This function determines the level and version of WHLLAPI under which your Windows HLLAPI application is running.

Prerequisite Functions

None.

Function Call

WinHLLAPI(QUERYSYSTEM,lpbyString,lpwLength,lpwReturnnCode)

Call Parameters

	

Return Parameters

	

Return Codes

	

Query Window Coordinates—Function 103

This function requests the window coordinates for a presentation space.

Prerequisite Functions

Connect Window Services (function 101).

Function Call

WinHLLAPI(QUERYWINDOWCOORDINATES,lpbyString,

lpwLength,lpwReturnnCode)
Call Parameters

	

Return Parameters

	

Return Codes

	

Remarks

The window coordinates are returned in pixels. This function is not supported for 5250 emulation.

Receive File—Function 91

This function transfers a file from the Host to the PC running the Windows HLLAPI application. The file transfer can be synchronous (dedicated) or asynchronous (call-and-return). See the “Remarks” section for information on asynchronous file transfer.

Prerequisite Functions

None.

Function Call

WinHLLAPI(hWnd,RECEIVEFILE,lpbyString,lpwLength,

lpwReturnnCode)
WinHLLAPIAsync(hWnd,RECEIVEFILE,lpbyString,lpwLength,

lpwReturnnCode)
Call Parameters

	

Return Codes

	

Remarks

This function is affected by the session options STRLEN/STREOT, EOT=c, QUIET/NOQUIET, and TIMEOUT=0/TIMEOUT=c. See Set Session Parameters (function 9) for details.

You cannot use this function on 5250 sessions, 5250 printer sessions, and 3270 printer sessions. Only one file transfer operation is supported at a time, regardless of the number of Host sessions accessed by your Windows HLLAPI application.

Data String should contain the RECEIVE command parameters that you would normally enter at the DOS prompt. For example, to receive the file SALES.RPT on your PC from the CMS file SLS REPRT A on the Host session with the short name session ID of “E:”

SYMBOL 117 \f "MSIcons" \s 9.5 \h
Data String
SALES.RPT E:SLS REPRT A (ASCII CRLF

SYMBOL 117 \f "MSIcons" \s 9.5 \h
Data Length
35

Asynchronous Mode

When asynchronous mode is enabled by calling WinHLLAPIAsync, this function initiates the file transfer and immediately returns control to your Windows HLLAPI application. This frees your application to perform other tasks while the file transfer is occurring.

Since asynchronous mode returns control immediately, you must use Windows version 3.x message notification to determine the completion status of the file transfer. Use the RegisterWindowsMessage() function to register the message “WinHLLAPIAsyncFileTransfer”. The message notification is in the format:

(wMsgID, wParm, lParm)
where

Release—Function 12

This function releases the currently Connected Host session presentation space locked with Reserve (function 11).

Prerequisite Functions

Connect Presentation Space (function 1).

Function Call

WinHLLAPI(RELEASE,lpbyString,lpwLength,lpwReturnnCode)
Call Parameters

	

Return Codes

	

Remarks

If you do not Release the Host session presentation space locked with Reserve (function 11), it remains locked until one of the following occurs:

SYMBOL 117 \f "MSIcons" \s 9.5 \h
Your Windows HLLAPI application calls Disconnect Presentation Space (function 2).

SYMBOL 117 \f "MSIcons" \s 9.5 \h
Your Windows HLLAPI application calls Reset System (function 21).

Reserve—Function 11

This function reserves the currently Connected Host session presentation space, locking out the user and preventing keyboard input.

Prerequisite Functions

Connect Presentation Space (function 1).

Function Call

WinHLLAPI(RESERVE,lpbyString,lpwLength,lpwReturnnCode)
Call Parameters

	

Return Codes

	

Remarks

Reserve locks out keyboard input. You can prevent the user from gaining access to the Host session with this function. Once the Host session presentation space is reserved, it remains locked until one of the following occurs:

SYMBOL 117 \f "MSIcons" \s 9.5 \h
Your Windows HLLAPI application calls Release (function 12).

SYMBOL 117 \f "MSIcons" \s 9.5 \h
Your Windows HLLAPI application calls Disconnect Presentation Space (function 2).

SYMBOL 117 \f "MSIcons" \s 9.5 \h
Your Windows HLLAPI application calls Reset System (function 21).

Reset System—Function 21

This function reinitializes the system to its default (start) state:

SYMBOL 117 \f "MSIcons" \s 9.5 \h
All session options are reset to their defaults.

SYMBOL 117 \f "MSIcons" \s 9.5 \h
Event notification is stopped.

SYMBOL 117 \f "MSIcons" \s 9.5 \h
Any reserved sessions are released.

SYMBOL 117 \f "MSIcons" \s 9.5 \h
Connected sessions are disconnected.

SYMBOL 117 \f "MSIcons" \s 9.5 \h
The current status of Host sessions is updated.

Prerequisite Functions

None.

Function Call

WinHLLAPI(RESETSYSTEM,lpbyString,lpwLength,lpwReturnnCode)

Call Parameters

	

Return Codes

	

Remarks

This function is normally used at the beginning and end of a Windows HLLAPI application to reset the system to initial default conditions.

This function resets ALL connected sessions owned by the HLLAPI application. As a result, caution is advised when using this function.

Search Field—Function 30

This function searches a field in the Host session presentation space for the specified string. You can use Search Field for either protected or unprotected fields but only in a field-formatted host presentation space.

Prerequisite Functions

Connect Presentation Space (function 1).

Function Call

WinHLLAPI(SEARCHFIELD,lpbyString,lpwLength,lpwReturnnCode)
Call Parameters

	

Return Parameters

	

Return Codes

	

Remarks

Position in the Host session presentation space is determined by starting in the upper left corner of the screen display (row 1, column 1). At the end of each screen display row, the next Host session presentation space position is column 1 of the following screen display row. This process continues until the end of the Host session presentation space (screen display) is reached.

This function is affected by four session option parameters: STRLEN/STREOT, EOT=c, SRCHALL/SRCHFROM and SRCHFRWD/SRCHBKWD. See Set Session Parameters (9) for details on these session options. The first two parameters affect string length and termination, but the last two directly affect how the Host session presentation space is examined:

	

Search Presentation Space—Function 6

This function allows you to search the Host session presentation space for a specified string.

Prerequisite Functions

Connect Presentation Space (function 1).

Function Call

WinHLLAPI(SEARCHPS,lpbyString,lpwLength,lpwReturnnCode)
Call Parameters

	

Return Parameters

	

Return Codes

	

Remarks

“Position” in the Host session presentation space is determined by starting in the upper left corner of the screen display (row 1, column 1). At the end of each screen display row, the next Host session presentation space position is column 1 of the following screen display row. This process continues until the end of the Host session presentation space (screen display) is reached.

This function is affected by four session option parameters: STRLEN/STREOT, EOT=c, SRCHALL/SRCHFROM and SRCHFRWD/SRCHBKWD. See Set Session parameters (function 9) for details on these session options. The first two parameters affect string length and termination, but the last two directly affect how the Host session presentation space is examined:

	

This function can be used to determine when the Host session is available for input. If your Windows HLLAPI application is waiting for a specific message or prompt, issue this function until the message or prompt is found.

You can also use the SRCHFROM session option in combination with this function to find multiple occurrences of a string in the Host session presentation space.

Send File—Function 90

This function transfers a file from the PC running the Windows HLLAPI application to the Host. The file transfer can be synchronous (dedicated) or asynchronous (call-and-return). See the “Remarks” section for information on asynchronous file transfer.

Prerequisite Functions

None.

Function Call

WinHLLAPI(SENDFILE,lpbyString,lpwLength,lpwReturnnCode)
WinHLLAPIAsync(hWnd,SENDFILE,lpbyString,lpwLength,

lpwReturnnCode)
Call Parameters

	

Return Codes

	

Remarks

This function is affected by the session options STRLEN/STREOT, EOT=c, QUIET/NOQUIET, and TIMEOUT=0/TIMEOUT=c . See Set Session Parameters (function 9) for details.

You cannot use this function on 5250 sessions, 5250 printer sessions, or 3270 printer sessions. Only one file transfer operation is supported at a time, regardless of the number of Host sessions accessed by your Windows HLLAPI application.

Data String should contain the SEND command parameters that you would normally enter at the DOS prompt. For example, to send the file SALES.RPT from your PC to the CMS file SLS REPRT A on the Host session with the short name session ID of “E:”

SYMBOL 117 \f "MSIcons" \s 9.5 \h
Data String
SALES.RPT E:SLS REPRT A (ASCII CRLF

SYMBOL 117 \f "MSIcons" \s 9.5 \h
Data Length
35

Asynchronous Mode

When asynchronous mode is enabled by calling WinHLLAPIAsync, the function initiates the file transfer and immediately returns control to your Windows HLLAPI application. This frees your application to perform other tasks while the file transfer is occurring.

Because asynchronous mode returns control immediately, you must use Windows version 3.x message notification to determine the completion status of the file transfer. Use the RegisterWindowsMessage() function to register the message “WinHLLAPIAsyncFileTransfer”. The message notification is in the format:

(wMsgID, wParm, lParm)
where

Send Key—Function 3

This function sends one or more keystrokes (up to a maximum of 255) to the connected Host session. The keystrokes appear to the session as if they are entered by a user. The keystrokes can include host function keys and AID keys.

Prerequisite Functions

Connect Presentation Space (function 1).

Function Call

WinHLLAPI(SENDKEY,lpbyString,lpwLength,lpwReturnnCode)
Call Parameters

	

Return Codes

	

Remarks

You cannot send keystrokes to the Host session when the keyboard is locked or busy (input inhibited). You can check the keyboard status with Wait (function 4). It is also your responsibility to treat input-protected or numeric-only Host fields appropriately.

This function is affected by five session options specified by Set Session Parameters (function 9): AUTORESET/NORESET, STRLEN/STREOT, EOT=c, and ESC=c.

You can increase the performance of the Send Key function by setting the session option NORESET. If this session option is set to AUTORESET, a reset code is always added to the beginning of the keystroke string, resetting all states that can be reset (except input-inhibited states). The added reset code bytes are not deducted from the Data String length of 255.

By default, the length of the Data String parameter must be specified by the Data Length parameter. Optionally, you can implicitly define the Data Length parameter by using the EOT delimiter character, which is specified with Set Session Parameters (function 9).

Note

Better character transfer performance is achieved with Copy String To Field (function 33) or Copy String To Presentation Space (function 15). However, only this function (Send Key) can send the host function keys.

This function can be used to send host function keys (including AID keys) to the Host by using special codes. These codes consist of an Escape character (default is “@,” the “at” sign) and a mnemonic code that corresponds to the supported host functions. The desired host function key codes are included as part of the Data String parameters. The Escape character can be changed with the session option ESC=c. See Set Session Parameters (function 9) for details.

When the Data String contains AID keys, the string includes characters up to, and including, the first AID key encountered. The segment string and segment length are set internally to the proper values as the segment is sent to the Host. Because some Host applications process AID keys differently, some keystrokes in a subsequent segment could be lost. It is therefore required that you do not create a Data String containing more than one AID key.

The characters that make up the host function key codes are part of the Data String and make up its total length. This means that you must be careful when using host function key codes to not exceed the maximum of 255 characters in the Data String. For example, if you need to send a string that contains the Enter key (code @E), then the two bytes for the Enter code must be included in the Data Length parameter.

The following table lists the host function keys and their corresponding codes. Please note that if a character is used in the code, the case of the character is important.

	

	

	

Note

If you want to use the “at” sign (@) in the Data String, you must use the two-byte code “@@”.

Set Cursor—Function 40

This function places the cursor at a specified position in the Host session presentation space.

Prerequisite Functions

Connect Presentation Space (function 1).

Function Call

WinHLLAPI(SETCURSOR,lpbyString,lpwLength,lpwReturnnCode)
Call Parameters

	

Return Codes

	

Remarks

5250 emulators supports a Presentation Space of 24 rows by 80 columns. When an error message from the host or when the operator presses the SysReq key, a 25th row is displayed. When the row 25 is displayed, it is a valid area for this function.

Set Session Parameters—Function 9

This function sets the options of the Host session. Session options that are not set with this function use their default values. Session options set with this function remain in effect until one of the following occurs:

SYMBOL 117 \f "MSIcons" \s 9.5 \h
Another Set Session Parameters call sets a new value.

SYMBOL 117 \f "MSIcons" \s 9.5 \h
Reset System (function 21) is called.

Prerequisite Functions

None.

Function Call

WinHLLAPI(SETSESSIONPARAMETERS,lpbyString,lpwLength,

lpwReturnnCode)

Call Parameters

	

Return Parameters

	

Return Codes

	

Remarks

The following table lists the functions that are affected by session options, and the session options that affect them.

	

	

The session options are described on the following pages, grouped by function. Each group of session options lists their general function, which Windows HLLAPI functions they affect, and the characteristics of each session option setting.

STRLEN/STREOT

Specify how the length of Data String is determined. Applies to Send Key (3), Search Presentation Space (6), Copy String to Presentation Space (15), Search Field (30), Copy String to Field (33), Send File (90) and Receive File (91).

	

EOT=c

When the STREOT session option is set, specify the delimiter character to mark the end of the Data String parameter on a function call. Applies to Send Key (3), Search Presentation Space (6), Copy String to Presentation Space (15), Search Field (30), Copy String to Field (33), Send File (90) and Receive File (91).

	

SRCHALL/SRCHFROM

Determine how the Host session presentation space is to be searched. Applies to Search Presentation Space (6) and Search Field (30).

	

SRCHFRWD/SRCHBKWD

When the SRCHFROM session option is set, determine the direction of the search. Applies to Search Presentation Space (6) and Search Field (30).

	

NOATTRB/ATTRB

Determine how to translate attributes to your Windows HLLAPI application. Applies to Copy Presentation Space (5), Copy Presentation Space to String (8) and Copy Field to String (34).

	

FPAUSE/IPAUSE

Determine the type of pause to use. Applies to Pause (18).

	

NOQUIET/QUIET

Determine whether the file transfer functions SEND FILE (90) and RECEIVE FILE (91) will generate messages displayed to the user. These options are not supported for 5250 emulation.

	

TIMEOUT=0/TIMEOUT=c

Set the timeout interval to be used during file transfer operations. If a timeout occurs, the file transfer aborts. These options are not supported for 5250 emulation.

	

	

ESC=c

Specify the escape character to use for 3270 function key codes. Applies to Send Key (3) and Get Key (51).

Set the escape character to use for 3270 function key codes to c which is a one-byte literal character. There must not be a space on either side of the equal sign (“space” is not a valid escape character). The default escape character is the at sign (@).

AUTORESET/NORESET

Determine if Send Key (function 3) sends a reset prior to the keystroke string or not.

	

TWAIT/LWAIT/NWAIT

Determine the characteristics of a wait period. Applies to Wait (4) and Get Key(51).

	

TRON/TROFF

Determine whether to enable or disable Windows HLLAPI tracing. The information in the trace is intended to help debug a Windows HLLAPI program. Tracing is turned off when the Windows HLLAPI program ends or when TROFF is specified.

	

EAB/NOEAB

Determine whether to include extended attributes (EABs) or not. Applies to Copy Presentation Space (5), Copy Presentation Space to String (8), Copy String to Presentation Space (15), Copy String to Field (33) and Copy Field to String (34).

	

XLATE/NOXLATE

Determine the translation of extended attributes (EABs). Applies to Copy Presentation Space (5), Copy Presentation Space to String (8) and Copy Field to String (34).

	

CONLOG/CONPHYS

Specify which application will be the foreground application when connecting to a session. Applies to Connect Presentation Space (1).

	

OLDOIA/NEWOIA

Specify the format for the data returned from Copy OIA (13).

	

NOCFGSIZE/CFGSIZE

Determine the presentation space size returned by Query Sessions (10).

	

DISPLAY/NODISPLAY

Specify whether nondisplay fields will be copied using Copy Presentation Space (5), Copy Presentation Space to String (8), Copy OIA (13), Copy String to Presentation Space (15), Copy String to Field (33), and Copy Field to String (34).

	

WRITE_SUPER/WRITE_WRITE/WRITE_READ
/WRITE_NONE/SUPER_WRITE/READ_WRITE

Specify whether a Windows HLLAPI application can or will share the presentation space to which it is connected with another application using Connect Presentation Space (1) and Connect PM Window Services (101).

	

NOKEY/KEY$nnnnnnnn

Allow applications that have sharing requirements to limit access to a partner application (i.e. an application developed to work with it).

	

Start Close Intercept—Function 41

This function allows the application to intercept user requests to close the emulation program.

Prerequisite Functions

None.

Function Call

WinHLLAPI(STARTCLOSEINTERCEPT,lpbyString,lpwLength,

lpwReturnnCode)

WinHLLAPIAsync(hWnd,STARTCLOSEINTERCEPT,lpbyString,
lpwLength,lpwReturnnCode)
Call Parameters

	

Return Parameters

	

Return Code

	

Remarks

Initially, the semaphore is set. After using this function, close requests from the user are discarded and the semaphore is cleared. Your application program can use the Query Close Intercept function to determine when a close request has occurred. This function is not supported for 5250 emulation.

Asynchronous Mode

When asynchronous mode is enabled by calling WinHLLAPIAsync, the function initiates close intercept and immediately returns control to your Windows HLLAPI application. This frees your application to perform other tasks while waiting for close requests.

Because asynchronous mode returns control immediately, you must use Windows version 3.x message notification to determine when close requests have occurred. Use the RegisterWindowsMessage() function to register the message “WinHLLAPIAsync”. See WinHLLAPIAsync in Chapter 4 for details.

Start Host Notification—Function 23

This function enables notifying your Windows HLLAPI application of changes in the Host session presentation space or Operation Information Area (OIA).

Prerequisite Functions

None.

Function Call

WinHLLAPI(STARTHOSTNOTIFICATION,lpbyString,lpwLength,

lpwReturnnCode)

WinHLLAPIAsync(hWnd,STARTHOSTNOTIFICATION,lpbyString,
lpwLength,lpwReturnnCode)
Call Parameters

	

Return Parameters

	

Return Codes

	

Remarks

Once enabled, Host notification is enabled until you call Stop Host Notification (function 25).

Once you call this function, you can use Pause (function 18) to notify your Windows HLLAPI application when the presentation space and/or OIA of a Host session have been updated. Use Query Host Update (function 24) to determine which parts of the Host session (presentation space, OIA, or both) have been updated.

Asynchronous Mode

When asynchronous mode is enabled by calling WinHLLAPIAsync, the function initiates host notification and immediately returns control to your Windows HLLAPI application. This frees your application to perform other tasks while waiting for host updates.

Because asynchronous mode returns control immediately, you must use Windows version 3.x message notification to determine when host updates have occurred. Use the RegisterWindowsMessage() function to register the message “WinHLLAPIAsync”. See WinHLLAPIAsync in Chapter 4 for details.

Start Keystroke Intercept—Function 50

This function enables your Windows HLLAPI application to intercept keystrokes sent to a session by the user.

Prerequisite Functions

None.

Function Call

WinHLLAPI(STARTKSINTERCEPT,lpbyString,lpwLength,

lpwReturnnCode)

WinHLLAPIAsync(hWnd,STARTKSINTERCEPT,lpbyString,lpwLength,

lpwReturnnCode)
Call Parameters

	

Return Codes

	

Remarks

Once this function is called, the intercepted keystrokes can be:

SYMBOL 117 \f "MSIcons" \s 9.5 \h
Received with Get Key (function 51) and sent to the same session or another session with Send Key (function 3).

SYMBOL 117 \f "MSIcons" \s 9.5 \h
Accepted and rejected with Post Intercept Status (function 52).

SYMBOL 117 \f "MSIcons" \s 9.5 \h
Replaced by other keystrokes with Send Key (function 3).

SYMBOL 117 \f "MSIcons" \s 9.5 \h
Used in a specific manner as appropriate for your Windows HLLAPI application.

If position 2 of Data String is “D,” only AID keystrokes are intercepted. All other keystrokes are passed on to the appropriate Host session presentation space.

Asynchronous Mode

When asynchronous mode is enabled by calling WinHLLAPIAsync, the function initiates keystroke intercept and immediately returns control to your Windows HLLAPI application. This frees your application to perform other tasks while waiting for keystrokes.

Because asynchronous mode returns control immediately, you must use Windows version 3.x message notification to determine when keystrokes have occurred. Use the RegisterWindowsMessage() function to register the message “WinHLLAPIAsync”. See WinHLLAPIAsync in Chapter 4 for details.

Stop Close Intercept—Function 43

This function stops the application from intercepting close requests from the user. Subsequent close requests are processed normally by the emulator program.

Prerequisite Functions

Start Close Intercept (function 41).

Function Call

WinHLLAPI(STOPCLOSEINTERCEPT,lpbyString,lpwLength,

lpwReturnnCode)
Call Parameters

	

Return Codes

	

Remarks

This function is not supported for 5250 emulation.

Stop Host Notification—Function 25

This function disables notifying your Windows HLLAPI application of changes in the Host session presentation space or Operation Information Area (OIA).

Prerequisite Functions

Start Host Notification (function 23).

Function Call

WinHLLAPI(STOPHOSTNOTIFICATION,lpbyString,lpwLength,

lpwReturnnCode)

Call Parameters

	

Return Codes

	

Remarks

Once Host notification has been disabled, Query Host Update (function 24) can no longer determine updates to the Host session, and Host events do not satisfy Pause (function 18).

Stop Keystroke Intercept—Function 53

This function disables the ability of your Windows HLLAPI application to intercept keystrokes.

Prerequisite Functions

Start Keystroke Intercept (function 50).

Function Call

WinHLLAPI(STOPKSINTERCEPT,lpbyString,lpwLength,

lpwReturnnCode)
Call Parameters

	

Return Codes

	

Wait—Function 4

This function determines whether the Host session is in a wait state. If, for some reason, the session is in a wait state, this function causes your Windows HLLAPI application to wait for the specified amount of time to see if the wait condition clears. The amount of time to wait is set by session options with Set Session Parameters (function 9).

Prerequisite Functions

Connect Presentation Space (function 1).

Function Call

WinHLLAPI(WAIT,lpbyString,lpwLength,lpwReturnnCode)
WinHLLAPIAsync(hWnd,WAIT,lpbyString,lpwLength,lpwReturnnCode)
Call Parameters

	

Return Codes

	

Remarks

Wait can be used to provide other functions, such as Send Key (function 3), enough time to complete or be processed. You can also use Wait to see if the keyboard is inhibited (return code of 4). Be aware, however, that when the return code is 0 (zero), the keyboard is unlocked and Wait has executed successfully, but the original transaction or preceding function may not have finished processing on the Host. If there are keywords or prompts you are expecting, use Search Field (function 30) or Search Presentation Space (function 6) in combination with Wait.

The length of time that this function will wait is affected by the session options TWAIT, LWAIT, and NWAIT. See Set Session Parameters (function 9) for details on these session options.

Although both APIs are supported, you should use WinHLLAPIAsync instead of WinHLLAPI whenever possible. Note that if NWAIT is specified, the WinHLLAPIAsync call will work the same as the WinHLLAPI call and not send a message.

Window Status—Function 104

This function allows the application to query or change a session’s window size, location, or visible state, or to query a session’s window handle or font characteristics.

Prerequisite Functions

Connect Window Services (function 101).

Function Call

WinHLLAPI(WINDOWSTATUS,lpbyString,lpwLength,

lpwReturnnCode)
Call Parameters

	

	

	

	

	

	

	

	

Return Codes

	

Remarks

All coordinate positions, screen sizes, offsets, and font sizes are in pixels. This function is not supported for 5250 emulation.

When resizing a window, the requested size and position may be slightly different then what was requested. Follow the set option with a query option to determine the final window position and size.

Chapter 4
Extensions for the Windows Environment

This chapter describes API extensions to Windows HLLAPI that allow asynchronous communication. These extensions have been designed for all implementations and versions of the Microsoft Windows graphical environment starting from Microsoft Windows version 3.0. They provide for Windows HLLAPI implementations and applications in 16- and 32‑bit operating environments.

Windows HLLAPI allows multithreaded Windows-based processes. A process contains one or more threads of execution. In the non-multithreaded world of the 16‑bit Windows environment, a task corresponds to a process with a single thread. All references to threads in this document refer to actual threads in multithreaded Windows environments. In non multithreaded environments, such as the Windows version 3.0 graphical environment, “thread” is synonymous with “process.”

The extensions for the Windows environment included in Windows HLLAPI are provided for maximum Microsoft Windows programming compatibility and optimum application performance.

Each of these function calls have corresponding prototypes in the WHLLAPI.H header file, found in Appendix A.

WinHLLAPIAsync()
This function provides an asynchronous flavor to the following HLLAPI functions: STARTKSINTERCEPT, WAIT, STARTHOSTNOTIFICATION, STARTCLOSEINTERCEPT, SENDFILE, and RECEIVEFILE. You should use WinHLLAPIAsync() instead of the blocking versions of these functions.

Syntax

HANDLE WinHLLAPIAsync(hWnd,lpwFunction,lpbyString,lpwLength,
lpwReturnCode);
When the asynchronous operation is complete, the application’s window hWnd receives the message returned by RegisterWindowMessage with “WinHLLAPIAsync” or “WinHLLAPIAsyncFileTransfer” as the input string. For STARTKSINTERCEPT, WAIT, STARTHOSTNOTIFICATION, and STARTCLOSEINTERCEPT, The wParam argument contains the asynchronous task handle as returned by the original function call. The high 16 bits of lParam contain any error code. The error code may be any error as defined in WHLLAPI.H. An error code of zero indicates successful completion of the asynchronous function. The low 16 bits contains the original function number. For SENDFILE and RECEIVEFILE, the wParam and lParam contain status information. See the Asynchronous Mode section of Send File and Receive File for details.

Returns

The return value specifies whether the asynchronous resolution request was successful.

It is nonzero if the operation was successful and the actual return value is an asynchronous task handle that can be subsequently used to cancel the asynchronous resolution request if necessary. It is zero if the function failed.

The asynchronous function can be canceled at any time by passing the handle returned by WinHLLAPIAsync to WinHLLAPICancelAsyncRequest().

Windows HLLAPI Supplier Notes

The Windows HLLAPI supplier must ensure that messages are successfully posted to the application. If a PostMessage() operation fails, the Windows HLLAPI implementation must re-post that message.

See also:
WinHLLAPICancelAsyncRequest()
WinHLLAPICleanup()
This routine should be called by an application to deregister itself from a Windows HLLAPI implementation.

Syntax

BOOL WinHLLAPICleanup(void)
Returns

The return value indicates whether the deregistration was successful. It is non-zero if the application was successfully deregistered; otherwise it is zero.

Windows HLLAPI Supplier Notes

Use the WinHLLAPICleanup() call to indicate deregistration of a Windows HLLAPI application from a Windows HLLAPI implementation. This function can be used, for example, to free up resources allocated to the specific application.

See also:
WinHLLAPIStartup()
WinHLLAPIIsBlocking()
This function allows a task to determine if it is executing while waiting for a previous blocking call to complete.

Syntax

BOOL WinHLLAPIIsBlocking(void)
Returns

The return value specifies the outcome of the function. It is nonzero if there is an outstanding blocking call awaiting completion; otherwise it is zero.

Remarks

Although a call issued on a blocking function appears to an application as though it blocks, the WHLLAPI DLL has to relinquish the processor to allow other applications to run. This means that it is possible for the application that issued the blocking call to be re-entered, depending on the message(s) it receives. In this instance, the WinHLLAPIIsBlocking() call can be used to determine whether the application task currently has been re-entered while waiting for an outstanding blocking call to complete. Note that Windows HLLAPI prohibits more than one outstanding blocking call per thread.

Windows HLLAPI Supplier Notes

A Windows HLLAPI implementation must prohibit more than one outstanding blocking call per thread.

WinHLLAPICancelAsyncRequest()
This function cancels an outstanding WinHLLAPIAsync()-based request.

Syntax

int WinHLLAPICancelAsyncRequest(HANDLE hAsyncTaskID,WORD
wFunction)
An asynchronous task previously initiated by issuing one of the WinHLLAPIAsync() functions can be canceled prior to completion by issuing the WinHLLAPICancelAsyncRequest() function and specifying the asynchronous task ID as returned by the initial function in the hAsyncTaskID parameter and the WinHLLAPI function number.

	

Returns

The return value specifies whether the original asynchronous request was canceled. It is zero if the request was canceled; otherwise it is on of the following return codes:

Remarks

Should an attempt to cancel an existing asynchronous WinHLLAPIAsync() routine fail with an error code of WHLLALREADY, it can be for one of 2 reasons. Firstly, the original routine has already completed and the application has dealt with the resultant message. Secondly, the original routine has already completed but the resultant message is still waiting in the application window queue.

See also:
WinHLLAPICancelAsyncRequest()
WinHLLAPICancelBlockingCall()
This function cancels any outstanding blocking operation for its thread. Any outstanding blocked call canceled will cause an error code of WHLLCANCEL to be generated. Examples of blocking calls are WinHLLAPI with function number set to GETKEY, WAIT, PAUSE, SENDFILE or RECEIVEFILE. You should use WinHLLAPIAsync() instead of the blocking versions of these functions.

Under Windows NT, a multi-threaded application may have multiple blocking operations outstanding; but only one per thread. To distinguish between multiple outstanding calls, WinHLLAPICancelBlockingCall cancels the outstanding operation on the current (i.e. calling) application thread if one exists; otherwise it fails. By default under Windows NT, WinHLLAPI will suspend the calling application thread while an operation is outstanding. As a result, the thread on which the blocking operation was initiated will not regain control (and hence will not be able to issue a call to WinHLLAPICancelBlockingCall) unless a blocking hook is registered for the thread using WinHLLAPISetBlockingHook. This condition does not apply to Windows version 3.x since applications only have one effective thread and the default blocking hook is registered by default.

Syntax

int WinHLLAPICancelBlockingCall(void)
Returns

The return value indicates whether the cancellation request was successful. It is zero if the operation was successful; otherwise it is one of the following return codes:

See also:
WinHLLAPICancelAsyncRequest()
WinHLLAPIStartup()
This function allows an application to specify the version of Windows HLLAPI required and to retrieve details of the specific Windows HLLAPI implementation. This function MUST be called by an application before issuing any further Windows HLLAPI calls to register itself with a Windows HLLAPI implementation.

Syntax

int WinHLLAPIStartup(WORD wVersionRequired, LPWHLLAPIDATA

 lpData)
In order to support future Windows HLLAPI implementations and applications that may have functionality differences from Windows HLLAPI version 1.0, a negotiation takes place in WinHLLAPIStartup(). An application passes to WinHLLAPIStartup() the Windows HLLAPI version of which it can take advantage. If this version is lower than the lowest version supported by the Windows HLLAPI DLL, then the DLL cannot support the application and the WinHLLAPIStartup() call fails. Otherwise, the call succeeds and returns the highest version of Windows HLLAPI supported by the DLL. If this version is lower than the lowest version supported by the application, the application either fails its initialization or attempts to find another Windows HLLAPI DLL on the system.

This negotiation allows both a Windows HLLAPI DLL and a Windows HLLAPI application to support a range of Windows HLLAPI versions. An application can successfully use a DLL if there is any overlap in the versions. The following chart gives examples of how WinHLLAPIStartup() works in conjunction with different application and DLL versions:

Details of the actual Windows HLLAPI implementation are described in the WHLLAPIDATA structure defined as follows:

typedef struct tagWHLLAPIDATA {

WORD
wVersion;

char
szDescription[WHLLDESCRIPTION_LEN+1];
} WHLLAPIDATA, * PWHLLAPIDATA, FAR * LPWHLLAPIDATA;

	

Having made its last Windows HLLAPI call, an application should call the WinHLLAPICleanup() routine.

	

Returns

The return value indicates whether the application was registered successfully and whether the Windows HLLAPI implementation can support the specified version number. It is zero if it was registered successfully and the specified version can be supported; otherwise it is one of the following return codes:

Windows HLLAPI Supplier Notes

Each Windows HLLAPI implementation must make a WinHLLAPIStartup() call before issuing any other Windows HLLAPI calls. This function can thus be used for initialization purposes.

See also:
WinHLLAPICleanup()
WinHLLAPISetBlockingHook()
This function installs a new function which a Windows HLLAPI Implementation should use to implement blocking HLLAPI function calls.

This mechanism is provided to allow a Windows version 3.x application to make blocking calls without blocking the rest of the system. By default under Windows NT, blocking calls will suspend the calling application’s thread until the request completes. Therefore if a single-threaded application is targeted at both Windows version 3.x and Windows NT and relies on this functionality it should register a blocking hook even if the default hook would suffice.

Syntax

FARPROC WinHLLAPISetBlockingHook(FARPROC lpBlockFunc)
Description

A Windows HLLAPI Implementation has a default mechanism by which blocking HLLAPI functions are implemented. This function gives the application the ability to execute its own function at blocking time in place of the default function.

	

The default blocking function is equivalent to:

BOOL DefaultBlockingHook(void) {

 MSG msg;

 /* get the next message if any */

 if(PeekMessage(&msg,0,0,PM_NOREMOVE)) {

 if (msg.message == WM_QUIT)

 return FALSE;
// let app process WM_QUIT

 PeekMessage(&msg,0,0,PM_REMOVE);

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 }

 /* TRUE if no WM_QUIT received */

 return TRUE;

}

The WinHLLAPISetBlockingHook function is provided to support those applications which require more complex message processing - for example, those employing the MDI (multiple document interface) model.

Blocking functions must return FALSE if it receives a WM_QUIT message so WinHLLAPI can return control to the application to process the message and terminate gracefully. Otherwise the function should return TRUE.

Returns

The return value points to the procedure-instance of the previously installed blocking function. The application or library that calls the SetBlockingHook function should save this return value so that it can be restored if necessary. (If “nesting” is not important, the application may simply discard the value returned by WinHLLAPISetBlockingHook and eventually use WinHLLAPIUnhookBlockingHook to restore the default mechanism.)

Windows HLLAPI Supplier Notes

This function must be implemented on a per-thread basis. It thus provides for a particular thread to replace the blocking mechanism without affecting other threads.

See also:
WinHLLAPIUnhookBlockingHook()
WinHLLAPIUnhookBlockingHook()
This function removes any previous blocking hook that has been installed and reinstalls the default blocking mechanism.

Syntax

BOOL WinHLLAPIUnhookBlockingHook(void)
Returns

The return value specifies the outcome of the function. It is nonzero if the default mechanism is successfully reinstalled; otherwise it is zero.

See also:
WinHLLAPISetBlockingHook()
Appendix A
WHLLAPI.H - Definitions / Declarations for the Windows HLLAPI Specification

/**\

* *

* whllapi.h - Windows HLLAPI functions, types, and definitions *

* *

* Version 1.0 *

* *

**/

/****** Function numbers **/

#define OEMFUNCTION 0 /* OEM Function */

#define CONNECTPS 1 /* Connect Presentation Space */

#define DISCONNECTPS 2 /* Disconnect Presentation Space */

#define SENDKEY 3 /* Send Key */

#define WAIT 4 /* Wait */

#define COPYPS 5 /* Copy Presentation Space */

#define SEARCHPS 6 /* Search Presentation Space */

#define QUERYCURSORLOC 7 /* Query Cursor Location */

#define COPYPSTOSTR 8 /* Copy Presentation Space To String */

#define SETSESSIONPARAMETERS 9 /* Set Session Parameters */

#define QUERYSESSIONS 10 /* Query Sessions */

#define RESERVE 11 /* Reserve */

#define RELEASE 12 /* Release */

#define COPYOIA 13 /* Copy OIA Information */

#define QUERYFIELDATTRIBUTE 14 /* Query Field Attribute */

#define COPYSTRTOPS 15 /* Copy String To Presentation Space */

#define STORAGEMGR 17 /* Storage Manager */

#define PAUSE 18 /* Pause */

#define QUERYSYSTEM 20 /* Query System */

#define RESETSYSTEM 21 /* Reset System */

#define QUERYSESSIONSTATUS 22 /* Query Session Status */

#define STARTHOSTNOTIFICATION 23 /* Start Host Notification */

#define QUERYHOSTUPDATE 24 /* Query Host Update */

#define STOPHOSTNOTIFICATION 25 /* Stop Host Notification */

#define SEARCHFIELD 30 /* Search Field */

#define FINDFIELDPOSITION 31 /* Find Field Position */

#define FINDFIELDLENGTH 32 /* Find Field Length */

#define COPYSTRINGTOFIELD 33 /* Copy String To Field */

#define COPYFIELDTOSTRING 34 /* Copy String To Field */

#define SETCURSOR 40 /* Set Cursor */

#define STARTCLOSEINTERCEPT 41 /* Start Close Intercept */

#define QUERYCLOSEINTERCEPT 42 /* Query Close Intercept */

#define STOPCLOSEINTERCEPT 43 /* Stop Close Intercept */

#define STARTKSINTERCEPT 50 /* Start Keystroke Intercept */

#define GETKEY 51 /* Get Key */

#define POSTINTERCEPTSTATUS 52 /* Post Intercept Status */

#define STOPKSINTERCEPT 53 /* Stop Keystroke Intercept */

#define LOCKPSAPI 60 /* Lock Presentation Space API */

#define LOCKWSAPI 61 /* Lock Window Services API */

#define SENDFILE 90 /* Send File */

#define RECEIVEFILE 91 /* Receive File */

#define CONVERT 99 /* Convert Position or RowCol */

#define CONNECTWINDOWSERVICES 101 /* Connect Window Services */

#define DISCONNECTWINDOWSERVICES 102 /* Disconnect Window Services */

#define QUERYWINDOWCOORDINATES 103 /* Query or Set Window Coordinates */

#define WINDOWSTATUS 104 /* Query or Set Window Status */

#define CHANGEPSNAME 105 /* Change Presentation Space Name */

#define CONNECTSTRFLDS 120 /* Connect Structured Fields */

#define DISCONSTRFLDS 121 /* Disconnect Structured Fields */

#define QUERYCOMMBUFSIZ 122 /* Query Communications Buffer Size */

#define ALLOCCOMMBUFF 123 /* Allocate Communications Buffer */

#define FREECOMMBUFF 124 /* Free Communications Buffer */

#define GETREQUESTCOMP 125 /* Get Request Completion */

#define READSTRFLDS 126 /* Read Structured Fields */

#define WRITESTRFLDS 127 /* Write Structured Fields */

/****** SetSessionParameters values ***/

#define WHLL_SSP_NEWRET (DWORD)0x00000001

#define WHLL_SSP_OLDRET (DWORD)0x00000002

#define WHLL_SSP_ATTRB (DWORD)0x00000004

#define WHLL_SSP_NOATTRB (DWORD)0x00000008

#define WHLL_SSP_NWAIT (DWORD)0x00000010

#define WHLL_SSP_LWAIT (DWORD)0x00000020

#define WHLL_SSP_TWAIT (DWORD)0x00000040

#define WHLL_SSP_EAB (DWORD)0x00000080

#define WHLL_SSP_NOEAB (DWORD)0x00000100

#define WHLL_SSP_AUTORESET (DWORD)0x00000200

#define WHLL_SSP_NORESET (DWORD)0x00000400

#define WHLL_SSP_SRCHALL (DWORD)0x00001000

#define WHLL_SSP_SRCHFROM (DWORD)0x00002000

#define WHLL_SSP_SRCHFRWD (DWORD)0x00004000

#define WHLL_SSP_SRCHBKWD (DWORD)0x00008000

#define WHLL_SSP_FPAUSE (DWORD)0x00010000

#define WHLL_SSP_IPAUSE (DWORD)0x00020000

/****** Convert Row or Column values **/

#define WHLL_CONVERT_POSITION 'P'

#define WHLL_CONVERT_ROW 'R'

/******* Storage Manager Sub-Function values ********************************/

#define WHLL_GETSTORAGE 1

#define WHLL_FREESTORAGE 2

#define WHLL_FREEALLSTORAGE 3

#define WHLL_QUERYFREESTORAGE 4

/****** Change PS Name values ***/

#define WHLL_CHANGEPSNAME_SET

0x01

#define WHLL_CHANGEPSNAME_RESET

0x02

/****** Window Status values **/

#define WHLL_WINDOWSTATUS_SET

0x01

#define WHLL_WINDOWSTATUS_QUERY

0x02

#define WHLL_WINDOWSTATUS_EXTQUERY

0x03

#define WHLL_WINDOWSTATUS_NULL

0x0000

#define WHLL_WINDOWSTATUS_SIZE

0x0001

#define WHLL_WINDOWSTATUS_MOVE

0x0002

#define WHLL_WINDOWSTATUS_ZORDER

0x0004

#define WHLL_WINDOWSTATUS_SHOW

0x0008

#define WHLL_WINDOWSTATUS_HIDE

0x0010

#define WHLL_WINDOWSTATUS_ACTIVATE

0x0080

#define WHLL_WINDOWSTATUS_DEACTIVATE

0x0100

#define WHLL_WINDOWSTATUS_MINIMIZE

0x0400

#define WHLL_WINDOWSTATUS_MAXIMIZE

0x0800

#define WHLL_WINDOWSTATUS_RESTORE

0x1000

#define WHLL_WINDOWSTATUS_FRONT

(DWORD)0x00000003

#define WHLL_WINDOWSTATUS_BACK

(DWORD)0x00000004

/****** Lock API values ***/

#define WHLL_LOCKAPI_LOCK

'L'

#define WHLL_LOCKAPI_UNLOCK

'U'

#define WHLL_LOCKAPI_RETURN

'R'

#define WHLL_LOCKAPI_QUEUE

'Q'

/****** Windows HLLAPI Return Codes ***/

#define WHLLOK 0 /* Successful */

#define WHLLNOTCONNECTED 1 /* Not Connected To Presentation Space */

#define WHLLBLOCKNOTAVAIL 1 /* Requested size is not available */

#define WHLLPARAMETERERROR 2 /* Parameter Error/Invalid Function */

#define WHLLBLOCKIDINVALID 2 /* Invalid Block ID was specified */

#define WHLLFTXCOMPLETE 3 /* File Transfer Complete */

#define WHLLFTXSEGMENTED 4 /* File Transfer Complete / segmented */

#define WHLLPSBUSY 4 /* Presentation Space is Busy */

#define WHLLINHIBITED 5 /* Inhibited/Keyboard Locked */

#define WHLLTRUNCATED 6 /* Data Truncated */

#define WHLLPOSITIONERROR 7 /* Invalid Presentation Space Position */

#define WHLLNOTAVAILABLE 8 /* Unavailable Operation */

#define WHLLSYSERROR 9 /* System Error */

#define WHLLNOTSUPPORTED 10 /* Function Not Supported */

#define WHLLUNAVAILABLE 11 /* Resource is unavailable */

#define WHLLPSENDED 12 /* The session was stopped */

#define WHLLUNDEFINEDKEY 20 /* Undefined Key Combination */

#define WHLLOIAUPDATE 21 /* OIA Updated */

#define WHLLPSUPDATE 22 /* PS Updated */

#define WHLLBOTHUPDATE 23 /* Both PS And OIA Updated */

#define WHLLNOFIELD 24 /* No Such Field Found */

#define WHLLNOKEYSTROKES 25 /* No Keystrokes are available */

#define WHLLPSCHANGED 26 /* PS or OIA changed */

#define WHLLFTXABORTED 27 /* File transfer aborted */

#define WHLLZEROLENFIELD 28 /* Field length is zero */

#define WHLLKEYOVERFLOW 31 /* Keystroke overflow */

#define WHLLSFACONN 32 /* Other application already connected */

#define WHLLTRANCANCLI 34 /* Message sent inbound to host cancelled */

#define WHLLTRANCANCL 35 /* Outbound trans from host cancelled */

#define WHLLHOSTCLOST 36 /* Contact with host was lost */

#define WHLLOKDISABLED 37 /* The function was successful */

#define WHLLNOTCOMPLETE 38 /* The requested fn was not completed */

#define WHLLSFDDM 39 /* One DDM session already connected */

#define WHLLSFDPEND 40 /* Disconnected w async requests pending */

#define WHLLBUFFINUSE 41 /* Specified buffer currently in use */

#define WHLLNOMATCH 42 /* No matching request found */

#define WHLLLOCKERROR 43 /* API already locked or unlocked */

#define WHLLINVALIDFUNCTIONNUM 301 /* Invalid function number */

#define WHLLFILENOTFOUND 302 /* File Not Found */

#define WHLLACCESSDENIED 305 /* Access Denied */

#define WHLLMEMORY 308 /* Insufficient Memory */

#define WHLLINVALIDENVIRONMENT 310 /* Invalid environment */

#define WHLLINVALIDFORMAT 311 /* Invalid format */

#define WHLLINVALIDPSID 9998 /* Invalid Presentation Space ID */

#define WHLLINVALIDRC 9999 /* Invalid Row or Column Code */

/****** Windows HLLAPI Extentions Return Codes ******************************/

#define WHLLALREADY 0xF000 /* An async call is already outstanding */

#define WHLLINVALID 0xF001 /* Async Task Id is invalid */

#define WHLLCANCEL 0xF002 /* Blocking call was cancelled */

#define WHLLSYSNOTREADY 0xF003 /* Underlying subsystem not started */

#define WHLLVERNOTSUPPORTED 0xF004 /* Application version not supported */

/****** Windows HLLAPI structure **/

#define WHLLDESCRIPTION_LEN
127

typdef struct tagWHLLAPIDATA {

WORD
wVersion;

char
szDescription[WHLLDESCRIPTION_LEN+1];

} WHLLAPIDATA, * PWHLLAPIDATA, FAR * LPWHLLAPIDATA;

/****** Windows HLLAPI Function Prototypes **********************************/

extern WORD WINAPI WinHLLAPI(lpWord, lpStr, lpWord, lpWord);

extern HANDLE WINAPI WinHLLAPIAsync(HWND, LPCSV);

extern BOOL WINAPI WinHLLAPICleanup(void);

extern BOOL WINAPI WinHLLAPIIsBlocking(void);

extern int WINAPI WinHLLAPICancelAsyncRequest(HANDLE, WORD);

extern int WINAPI WinHLLAPICancelBlockingCall(void);

extern int WINAPI WinHLLAPIStartup(WORD, LPWHLLAPIDATA);

extern FARPROC WINAPI WinHLLAPISetBlockingHook(FARPROC);

extern BOOL WINAPI WinHLLAPIUnhookBlockingHook(void);

Appendix B
Attributes

This appendix contains the following tables:

SYMBOL 183 \f "Symbol" \s 10 \h
3270 and 5250 Character Attributes.

SYMBOL 183 \f "Symbol" \s 10 \h
3270 and 5250 Character Color Attributes.

SYMBOL 183 \f "Symbol" \s 10 \h
3270 and 5250 Field Attributes.

Note

The attribute bit positions are in IBM format. The leftmost bit in the byte
is 0.

Character Attributes

3270 character attributes

	Bit Position
	Meaning

	

	0-1
	Character highlighting
00 = Normal

10 = Reverse video
01 = Blink

11 = Underline

	2-4

	Character color (color remap may override this definition)
000 = Default

100 = Green
001 = Blue

101 = Turquoise
010 = Red

110 = Yellow
011 = Pink

111 = White

	5-7
	Reserved (not used)

5250 Character Attributes

	Bit Position
	Meaning

	

	0
	Reverse image
0 = Normal

1 = Reverse

	1
	Underscore
0 = None

1 = Underscore

	2
	Blink
0 = None

1 = Blink

	3
	Column separators
0 = None

1 = Column separators

	4-7
	Reserved (not used)

Character Color Attributes

	Bit Position
	Meaning

	

	0-3
	Background character colors

	
	0000 = Black

0100 = Red
0001 = Blue

0101 = Magenta
0010 = Green

0110 = Brown
0011 = Cyan

0111 = White

	4-7
	Foreground character colors

	
	0000 = Black

1000 = Gray
0001 = Blue

1001 = Light blue
0010 = Green

1010 = Light green
0011 = Cyan

1011 = Light cyan
0100 = Red

1100 = Light red
0101 = Magenta
1101 = Light magenta
0110 = Brown

1110 = Yellow
0111 = White

1111 = High intensity white

Field Attributes

3270 field attributes

	Bit Position
	Meaning

	

	0-1
	Both set to 1 (field attribute byte)

	2
	Unprotected/protected

	
	0 = Unprotected data field

	
	1 = Protected data field

	3
	Alpha/numeric

	
	0 = Alphanumeric data

	
	1 = Numeric data only

	4-5
	I/SPD

	
	00 = Normal intensity, pen not detectable

	
	01 = Normal intensity, pen detectable

	
	10 = High intensity, pen detectable

	
	11 = Non-display, pen not detectable

	6
	Reserved

	7
	MDT (Modified Data Tag)

	
	0 = Field has not been modified

	
	1 = Field has been modified

5250 field attributes

	Bit Position
	Meaning

	

	0
	Field attribute flag

	
	0=Not a field attribute

	
	1=Field attribute byte

	1
	Visibility

	
	0 = Non-display

	
	1 = Display

	2
	Unprotected/protected

	
	0 = Unprotected data field

	
	1 = Protected data field

	3
	Intensity

	
	0 = Normal

	
	1 = High

	4-6
	Field Type

	
	000 =Alphanumeric: all characters allowed

	
	001 = Alphabetic only

	
	010 = Numeric shift: automatic shift for numerics

	
	011 = Numeric only

	
	100=Reserved

	
	101=Digits:

	
	110=Magnetic stripe reader data only

	
	111=Signed Numeric

	7
	MDT

	
	0 = Field has not been modified

	
	1 = Field has been modified

Appendix C
Extended Windows HLLAPI Functions

This appendix lists the WinHLLAPI functions defined in release 1.0 of IBM Extended Services for OS/2 EHLLAPI Programming Reference but not required for WinHLLAPI compliance.

Allocate Communications Buffer—Function 123

This function allows the application to obtain exclusive control of a memory buffer to be used for read and write structured field requests. A buffer address must be passed on to the functions that read and write the structured field requests.

Prerequisite Functions

None.

Function Call

WinHLLAPI(ALLOCCOMMBUFF,lpbyString,lpwLength,

lpwReturnnCode)
Call Parameters

	Parameter
	Description

	

	Data String
	A 6-byte string with the following format:

	
	Byte 1-2
	16‑bit buffer length requested.
(0<size<(64K-8)) or (0<size<X'FFF8')

	
	Byte 3-6
	Reserved.

	Data Length
	Must be specified.

	PS Position
	NA

Return Parameters

	Parameter
	Description

	

	Data String
	A 6-byte string with the following format:

	
	Byte 1-2
	16‑bit buffer length requested.

	
	Byte 3-6
	32‑bit address of the allocated buffer.

	Data Length
	NA (length of 8 is implied).

	PS Position
	NA.

Return Codes

	Code
	Description

	

	WHLLOK
	The function was successful.

	WHLLNOTCONNECTED
	An invalid presentation space was specified, or was not connected for window services.

	WHLLPARAMETERERROR
	An invalid option was specified.

	WHLLSYSERROR
	The function failed due to a system error.

	WHLLUNAVAILABLE
	The requested resource is not available.

Remarks

The buffer address is placed in the returned parameter string. The requested buffer size, from 1 byte to 64K minus 8 bytes, is also in the parameter string. See the description of Query Communications Buffer Size (122) for information regarding the size of the buffer.

Buffers obtained with this function cannot be shared among different processes. Applications that attempt to share these buffers will experience unpredictable results.

Your Windows HLLAPI application must issue a Free Communications Buffer (124) function to free the allocated memory for use by other programs.

The Reset System (21) function call frees any buffers allocated by this function.

Note

No more than 10 buffers may be allocated to an application at one time. When this limit is reached, additional requests to WinHLLAPI will return an 11, indicating that the resource is unavailable.

Connect Structured Fields—Function 120

This function allows an application to establish a connection with a Host session.

Prerequisite Functions

None

Function Call

WinHLLAPI(CONNECTSTRFLDS,lpbyString,lpwLength,

lpwReturnnCode)

Call Parameters

	Parameter
	Description

	

	Data String
	An 11-byte string for returned semaphore address. The first byte is a short name session ID of the session to query, or space or null for the current session. Bytes 2-5 are the address of the query reply data buffer.

	
	Byte 1
	Short name session ID, or space or null for the current session.

	
	Byte 2-5
	Four byte address of the query reply data buffer.

	
	Bytes 6-11
	Reserved for return parameters.

	Data Length
	Must be specified.

	PS Position
	NA

Return Parameters

	Parameter
	Description

	

	Data String
	An 11-byte string with the following format:

	
	Byte 1
	Short name session ID.

	
	Bytes 2-5
	4-byte address of the query reply data buffer.

	
	Bytes 6-7
	16‑bit value which represents the destination/origin ID returned to the application by the emulator.

	
	Bytes 8-11
	Address of the semaphore with connection status.

Return Codes

	Code
	Description

	

	WHLLOK
	The function was successful.

	WHLLNOTCONNECTED
	An invalid presentation space was specified.

	WHLLPARAMETERERROR
	An invalid option was specified.

	WHLLSYSERROR
	The function failed due to a system error.

	WHLLNOTSUPPORTED
	The function is not supported by the emulation program.

	WHLLSFACONN
	The function failed because another application is already connected to this session.

	WHLLSFDDM
	The function failed because a DDM session is already connected to this session.

Remarks

Windows HLLAPI scans the query reply buffers for the destination/origin ID (DOID) self-defining parameter (SDP) to obtain the contents of the DOID field of the query reply (that the workstation must supply). A value of X'0000' will cause the emulator to assign a DOID to the workstation application and WinHLLAPI will fill in the DOID field of the query reply with the assigned ID. If the value specified is non-zero, the emulator will assign the specified value as the workstation application’s DOID, assuming that the ID has not been previously assigned. If the specified DOID is already in use, a return code of 2 will be returned by WinHLLAPI.

The application must build the query reply data structures within the application’s private memory space. See Appendix D, “Query Reply Data Structures for Windows HLLAPI” for detailed information about structured field usage for the query reply data structures that are supported by WinHLLAPI.

The 2-byte length field at the beginning of each query reply must not be byte-reversed by the application.

Cursory checking is performed on the query data reply (only the ID and the length of the structure are checked for validity).

The semaphore determines if the state of the structured field connection is set (disabled) or clear (enabled). If the emulator, for example, is in a state that allows processing of a structured field, the semaphore will be clear. If the emulator cannot currently process a structured field, the semaphore will be set. Be sure to check the status of the structured field semaphore before attempting a Read Structured Field (126) or a Write Structured Field (127) function call.

The semaphore is set during the connect process because the emulator is in an inbound disabled state. The semaphore is cleared for the first time when outbound data destined for the connecting DOID is received by the emulator. Because the emulator is in an inbound disabled state, a host application cannot be started via a Write Structured Fields (127) function call. The host application must be started manually, or by issuing a Send Key (3).

Only one DDM base-type connection is allowed, per host session. If the DDM connection supports SDP for the DOID, multiple connections are allowed.

If return code RC=32 or RC=39 is received, an application is already connected to the selected session, and use of that presentation space should be very carefully approached. Otherwise, conflicts with File Transfer or other Windows HLLAPI applications may occur.

Note

Structured fields are not supported by the COBOL programming language due to memory access problems inherent to the language.

Disconnect Structured Fields—Function 121

This function drops the connection between the Windows HLLAPI application and the specified session.

Prerequisite Functions

Connect Structured Fields (function 120).

Function Call

WinHLLAPI(DISCONSTRFLDS,lpbyString,lpwLength,lpwReturnnCode)
Call Parameters

	Parameter
	Description

	

	Data String
	A 3-byte string with the following format:

	
	Byte 1
	Short name session ID.

	
	Bytes 2-3
	A 16‑bit value which represents the destination/origin ID returned to the application by the Connect Structured Fields (120) function.

	Data Length
	Must be user-specified.

	PS Position
	NA.

Return Codes

	Code
	Description

	

	WHLLOK
	The function was successful.

	WHLLNOTCONNECTED
	An invalid presentation space was specified, or was not connected for structured field access.

	WHLLPARAMETERERROR
	An invalid parameter was specified.

	WHLLSYSERROR
	The function failed due to a system error.

	WHLLSFDPEND
	The session was disconnected with asynchronous requests pending.

Remarks

When a Disconnect Structured Fields (121) is called, any active asynchronous Read Structured Fields (126) or Write Structured Fields (127) function requests are returned if the application issues the Get Request Completion (125) function call. Use the asynchronous form of this function when cleaning up after issuing a Disconnect call.

Before exiting the application, you should request the Disconnect Structured Fields (121) function for all emulation sessions that have been connected to using the Connect Structured Fields (120) function. If the application exits with outstanding requests for structured field connections, the those outstanding requests are cancelled. The Reset System (21) function also causes any outstanding requests to be cancelled before disconnecting from structured fields.

Any outstanding asynchronous requests that have not been retrieved by the application using the Get Request Completion (125) function are cleared by the Reset System (21) function, or when WinHLLAPI is initialized again.

Note

Structured fields are not supported by the COBOL programming language due to memory access problems inherent to the language.

Free Communications Buffer—Function 124

This function allows the application to release exclusive control of a buffer that is no longer required by the application.

Prerequisite Functions

Allocate Communications Buffer (123).

Function Call

WinHLLAPI(FREECOMMBUFF,lpbyString,lpwLength,lpwReturnnCode)
Call Parameters

	Parameter
	Description

	

	Data String
	A 6-byte string with the following format:

	
	Byte 1-2
	16‑bit length of the buffer to be freed. If the value of the length specified is 0, the entire buffer is freed.

	
	Byte 3-6
	32‑bit address of the buffer obtained from call to Allocate Communications Buffer (123).

	Data Length
	Must be specified.

	PS Position
	NA

Return Code

	Code
	Description

	

	WHLLOK
	The function was successful.

	WHLLNOTCONNECTED
	An invalid presentation space was specified, or was not connected.

	WHLLPARAMETERERROR
	An invalid option was specified.

	WHLLSYSERROR
	The function failed due to a system error.

	WHLLBUFFINUSE
	The specified buffer is currently in use.

Remarks

If the application attempts to free a buffer in which the buffer address plus the buffer length overlaps a buffer currently in use, the request is denied and the return code value of 41 (requested buffer in use) is returned. If the application attempts to free an entire selector that contains a buffer in use, the request is also denied and the return code value 41 is returned to the application.

Before exiting an application, you should issue the Free Communications Buffer function call for all communications buffers that have been allocated using the Allocate Communications Buffer (123) function. If the application exits without freeing the buffers, WinHLLAPI will free them when the application exits.

Buffers can also be freed by the Reset System (21) function.

Get Request Completion—Function 125

This function allows the application to determine the status of a previous asynchronous function request issued to WinHLLAPI, and obtains the function parameter list before using the data string again.

Prerequisite Functions

Connect Structured Fields (120) and either Read Structured Fields (126) or Write Structured Fields (127).

Function Call

WinHLLAPI(GETREQUESTCOMP,lpbyString,lpwLength,

lpwReturnnCode)
Call Parameters

	Parameter
	Description

	

	Data String
	A 14-byte string with the following format:

	
	Byte 1
	A 1-character session short name.

	
	Byte 2
	One of the following:

N (no wait)

W (wait)

	
	Bytes 3-4
	A 16‑bit word (2 bytes) into which the function request ID has been placed.

	
	Bytes 5-14
	Reserved for returned parameters

	Data Length
	NA (defaults to 14).

	PS Position
	NA.

Return Parameters

	Parameter
	Description

	

	Data String
	If the return code from this function is 0:

	
	Bytes 5-6
	Two bytes containing the function code of the completed async function.

	
	Bytes 7-10
	Four bytes containing the address of the data string of the completed async function call. The application must not reuse the data string until the request has completed.

	
	Bytes 11-12
	Two bytes containing the length of the data string of the completed async function.

	
	Bytes 13-14
	Two bytes containing the return code of the completed async function.

Return Codes

	Code
	Description

	

	WHLLOK
	The function was successful.

	WHLLNOTCONNECTED
	An invalid presentation space was specified.

	WHLLPARAMETERERROR
	An invalid option was specified.

	WHLLSYSERROR
	The function failed due to a system error.

	WHLLNOTCOMPLETE
	The requested function was not completed.

	WHLLNOMATCH
	A matching request was not found.

The difference between returns of WHLLNOTCOMPLETE and WHLLNOMATCH:

WHLLNOTCOMPLETE

If a specific Request ID and session were requested, the session and the ID were found but the request is pending (not yet in a completed state).

If a zero Request ID and specific session were requested, the specified session has pending requests that were not satisfied (completed).

If a Request ID and a blank session were requested, pending requests were found, but none were satisfied.

WHLLNOMATCH
If a specific Request ID and session were requested, the specific ID was not found in either a pending or completed state.

If a zero Request ID and specific session were requested, the specified session has no pending or completed requests.

If a Request ID and a blank session were requested, no pending or completed requests were found.

Remarks

This function is valid only if the user specified asynchronous completion (A) on a previous function call such as Read Structured Fields (126) or Write Structured Fields (127).

Each asynchronous request that requires the Get Request Completion (125) function returns a unique ID from the asynchronous request. The application must save this ID. This ID is the identification used by the Get Request Completion (125) function to identify the request.

The user specifies whether the application can query of wait for one of the following:

SYMBOL 117 \f "MSIcons" \s 9.5 \h
A specific asynchronous function request by supplying the Request ID of that function and a non-blank session short name.

SYMBOL 117 \f "MSIcons" \s 9.5 \h
The first completed asynchronous function request by supplying a Request ID of 0x0000 and a blank session short name.

SYMBOL 117 \f "MSIcons" \s 9.5 \h
The first completed asynchronous function request for a specified session by supplying a Request ID of 0x0000 and a non-blank session short name.

SYMBOL 117 \f "MSIcons" \s 9.5 \h
The Get Request Completion (125) function behaves differently depending upon the second character of the parameter string, which is one of the following:

N (no wait)

If a specific Request ID was supplied and the function completed, control is returned to the application with a return code of zero and a completed data string as defined previously. If a Request ID of 0x0000 was supplied and any eligible asynchronous function has completed, control is returned to the application with a return code of zero and a completed data string as defined previously. If a function has not completed, control is returned to the calling application with a non-zero return code.

W (wait)

If a specific Request ID was supplied and the function has completed:

SYMBOL 117 \f "MSIcons" \s 9.5 \h
The semaphore is cleared

Control is returned to the application with a return code of zero and a completed data string as defined previously

If a Request ID of zero was supplied any eligible function has completed:

SYMBOL 117 \f "MSIcons" \s 9.5 \h
The semaphore is cleared

Control is returned to the application with a return code of zero and a completed data string as defined previously

If a function has not completed, the call waits until a function completes before returning to the application. When it returns, the return code is zero and the data string is completed.

If a nonzero Request ID is supplied, this function checks for the completion of only the function associated with the ID.

If the return code is zero, the application should check the returned data string for information pertaining to the completion of the requested asynchronous function.

Note

The communications subsystem allows for a maximum of 20 asynchronous requests per application to be outstanding. A return code for unavailable resources (RC = 11) is returned if more than 20 asynchronous requests are attempted.

Lock Presentation Space API—Function 60

This function allows the application to obtain or release exclusive control of the presentation space.

Prerequisite Functions

Connect Presentation Space (function 1).

Function Call

WinHLLAPI(LOCKPSAPI,lpbyString,lpwLength,lpwReturnnCode)
Call Parameters

	Parameter
	Description

	

	Data String
	Locking parameters - a 3-byte string with the following format:

	
	Byte 1
	Short name session ID, or space or null for the current session.

	
	Byte 2
	One of the following:

SYMBOL 117 \f "MSIcons" \s 9.5 \h
WHLL_LOCKAPI_LOCK to lock the API.

SYMBOL 117 \f "MSIcons" \s 9.5 \h
WHLL_LOCKAPI_UNLOCK to unlock the API.

	
	Byte 3
	One of the following:

SYMBOL 117 \f "MSIcons" \s 9.5 \h
WHLL_LOCKAPI_RETURN to return if the API is already locked.

SYMBOL 117 \f "MSIcons" \s 9.5 \h
WHLL_LOCKAPI_QUEUE to queue the lock request if the API is already locked.

	Data Length
	Must be specified (normally 3).

	PS Position
	NA.

Return Codes

	Code
	Description

	

	WHLLOK
	The function was successful.

	WHLLNOTCONNECTED
	An invalid presentation space was specified, or was not connected.

	WHLLPARAMETERERROR
	An invalid option was specified.

	WHLLSYSERROR
	The function failed due to a system error.

	WHLLNOTSUPPORTED
	The function was not supported by the emulation program.

	WHLLPSENDED
	The session stopped.

	WHLLLOCKERROR
	If _LOCK, the API was already locked.
If _UNLOCK, the API was not locked.

Remarks

If the API is locked, the WinHLLAPI functions are rejected until the API is unlocked by using the _UNLOCK option, or by disconnecting or resetting the presentation space.

Lock Window Services API—Function 61

This function allows the application to obtain or release exclusive control of the presentation space window services.

Prerequisite Functions

Connect Window Services (function 101).

Function Call

WinHLLAPI(LOCKWSAPI,lpbyString,lpwLength,lpwReturnnCode)
Call Parameters

	Parameter
	Description

	

	Data String
	Locking parameters - a 3-byte string with the following format:

	
	Byte 1
	Short name session ID, or space or null for the current session.

	
	Byte 2
	One of the following:

SYMBOL 117 \f "MSIcons" \s 9.5 \h
WHLL_LOCKAPI_LOCK to lock the API.

SYMBOL 117 \f "MSIcons" \s 9.5 \h
WHLL_LOCKAPI_UNLOCK to unlock the API.

	
	Byte 3
	One of the following:

SYMBOL 117 \f "MSIcons" \s 9.5 \h
WHLL_LOCKAPI_RETURN to return if the API is already locked.

SYMBOL 117 \f "MSIcons" \s 9.5 \h
WHLL_LOCKAPI_QUEUE to queue the lock request if the API is already locked.

	Data Length
	Must be specified (normally 3).

	PS Position
	NA.

Return Codes

	Code
	Description

	

	WHLLOK
	The function was successful.

	WHLLNOTCONNECTED
	An invalid presentation space was specified, or was not connected for window services.

	WHLLPARAMETERERROR
	An invalid option was specified.

	WHLLSYSERROR
	The function failed due to a system error.

	WHLLNOTSUPPORTED
	The function was not supported by the emulation program.

	WHLLPSENDED
	The session stopped.

	WHLLLOCKERROR
	If _LOCK, the API was already locked.
If _UNLOCK, the API was not locked.

Remarks

If the API is locked, Window Services functions are rejected until the API is unlocked by using the UNLOCK option, or by disconnecting or resetting the presentation space.

Query Communication Buffer Size—Function 122

This function allows the application to determine the maximum and optimum inbound and outbound buffer size supported by the communications engine. These buffer sizes are to be used with the Allocate Communications Buffer (123) function to optimize the performance of the structured field functions.

Prerequisite Functions

None.

Function Call

WinHLLAPI(QUERYCOMMBUFSIZ,lpbyString,lpwLength,

lpwReturnnCode)
Call Parameters

	Parameter
	Description

	

	Data String
	A 9-byte string with the following format:

	
	Byte 1
	Short name session ID.

	
	Bytes 2-9
	Reserved.

	Data Length
	Must be specified.

	PS Position
	NA.

Return Parameters

	Parameter
	Description

	

	Data String
	A 9-byte string with the following format:

	
	Byte 1
	Short name session ID.

	
	Bytes 2-3
	16‑bit value indicating optimum inbound buffer size.

	
	Bytes 4-5
	16‑bit value indicating maximum inbound buffer size.

	
	Bytes 6-7
	16‑bit value indicating optimum outbound buffer size.

	
	Bytes 8-9
	16‑bit value indicating maximum outbound buffer size.

Return Codes

	Code
	Description

	

	WHLLOK
	The function was successful.

	WHLLNOTCONNECTED
	An invalid presentation space was specified, or was not connected for window services.

	WHLLPARAMETERERROR
	An invalid option was specified.

	WHLLSYSERROR
	The function failed due to a system error.

	WHLLNOTSUPPORTED
	The function is not supported by the emulation program.

Remarks

The buffer sizes that are returned represent the record sizes transmitted across the communications medium. For a DDM connection, the 8-byte header supplied in the Read and Write structured fields data buffer is stripped off and 1 byte containing the structured field AID value is prefixed. The application should compare the size of the actual data in the data buffer (which does not include the 8-byte header) to the buffer sizes returned by the Query Communications Buffer Size function minus 1 byte. For destination/origin connections, the 8-byte header supplied in the Read or Write structured fields data buffer is stripped and 9 bytes are then prefixed to the data. The application should compare the size of the actual data in the data buffer (not including the 8-byte header) to the buffer size returned from the Query Communications Buffer Size (122) function minus 9 bytes.

The maximum buffer sizes represent the maximum number of bytes supported by the PS hardware, and the maximum number of bytes supported by the emulator. The application may use the maximum buffer size only if the host system is also configured to accept that size.

The optimum buffer sizes represent the optimal number of bytes supported by both the PC hardware, and the emulator.

If the network configuration sets transmission limits smaller than the optimum buffer size values, the Query Communications Buffer Size (122) call reflects the data transfer buffer size from the current configuration profile.

Read Structured Fields—Function 126

This function receives structured field data from the host application.

If the call specifies asynchronous (A), the application receives control immediately after the call, even if host data is not available. If the call specifies synchronous (S), WinHLLAPI waits for host data to become available before returning control to the application.

The application provides the buffer address in which data from the host is to be placed. The buffer must be obtained using the Allocate Communications Buffer (123) function call.

Prerequisite Functions

Connect Structured Fields (function 120).

Allocate Communications Buffer (function 123).

Function Call

WinHLLAPI(READSTRFLDS,lpbyString,lpwLength,lpwReturnnCode)
Call Parameters

	Parameter
	Description

	

	Data String
	An 8-byte string for synchronous, or a 14-byte string for asynchronous in the following format:

	
	Byte 1
	A 1-character session short name.

	
	Byte 2
	A 1-character specifying the control option
S (synchronous control) - control is not returned to the application until the read is satisfied.
A (asynchronous control) - control is returned immediately to the application.

	
	Bytes 3-4
	The 16‑bit word unique destination/origin ID returned by the Connect Structured Fields (120) function call.

	
	Bytes 5-8
	The 4-byte value of the buffer address into which the data is to be read. The buffer must be obtained using the Allocate Communications Buffer (123) function call.

	Data Length
	Must be 8 or 14.

	PS Position
	NA.

Return Parameters

	Parameter
	Description

	

	Data String
	When the A (asynchronous) control option is specified and the request is successfully completed, the following are returned:

	
	Bytes 9-10
	A 16‑bit value representing the destination/origin ID returned to the application by the emulator. This function request ID is used by the Get Request Completion (125) function to determine the status of this function call.

	
	Bytes 11-14
	A 4-byte value in which the semaphore address is returned by WinHLLAPI. The application may wait upon this semaphore. When the semaphore is cleared, the application must issue the Get Request Completion (125) function call.

Note

A semaphore address is returned for each successful asynchronous request. The semaphore should not be used again, A new semaphore is returned for each request and is valid for only the duration of that request.

Note

There is no returned data string for the S (synchronous) control option.

Return Codes

	Code
	Description

	

	WHLLOK
	The function was successful.

	WHLLNOTCONNECTED
	An invalid presentation space was specified, or was not connected or the DOID was incorrect.

	WHLLPARAMETERERROR
	An invalid option was specified.

	WHLLSYSERROR
	The function failed due to a system error.

	WHLLUNAVAILABLE
	The requested resource was not available.

	WHLLTRANCANCL
	An outbound transmission from the host was canceled.

	WHLLHOSTCLOST
	Contact with the host was lost.

	WHLLOKDISABLED
	The function was successful.

Warning

The host inbound transmission is disabled.

The application must correct the situation if one of the following return codes is specified:

	WHLLTRANCANCL
	Is returned if the first Read Structured Fields (126) or Write Structured Fields (127) is requested after an outbound transmission from the host is canceled.

	WHLLHOSTCLOST
	Which requires the application to disconnect from the communications subsystem and reconnect to establish communications with the host again.

	WHLLOKDISABLED
	Which is returned if the host is inbound disabled.

Remarks

When the call to Read Structured Fields (126) is complete, the Read Buffer, whose address was specified in positions 5-8 of the data string, will contain the structured fields received from the host application.

The format of the Read Buffer is as follows:

	Position
	Meaning

	

	Bytes 0-1
	A 16‑bit value - 0x0000.

	Bytes 2-3
	A 16‑bit value which contains the Message length (m), which is the number of bytes of data in the message not including the 8-byte message header. This value is returned by the subsystem.

	Bytes 4-5
	A 16‑bit value which contains the Buffer Size (n), which is the supplied length of the data buffer not including the 8-byte message header.

	Bytes 6-7
	A 16‑bit value - 0xC000

	Bytes 8-9
	A 16‑bit value which contains the Length of the first or only structured field message (not byte-reversed).

	Byte 10
	First non-length byte of the structured field message.

	Byte m
	Last byte in the structured field message.

Bytes 0-7 are the buffer header, which is passed to and used by the communications subsystem. The application must prepare the buffer header before using it in the structured fields call. The word at position 0 must be set to a value of zero. The length of the buffer, requested with the Allocate Communications Buffer (123) function, must be in the word at position 4. The word at position 6 must be set to 0xC000.

Bytes 8-m are where the structured field messages are returned. The following occurs when the call is returned:

SYMBOL 117 \f "MSIcons" \s 9.5 \h
The word at position 2 contains the length (8-m) of the structured field messages.

SYMBOL 117 \f "MSIcons" \s 9.5 \h
The word at position 8 contains the length of the first structured field message.

Bytes 10-m contain the actual data of the structured field message.

Synchronous Requests

When Read Structured Fields (126) is requested synchronously (the S option in the data string), control is returned to the application only after the request is satisfied. The application can assume:

SYMBOL 117 \f "MSIcons" \s 9.5 \h
The return code is correct.

SYMBOL 117 \f "MSIcons" \s 9.5 \h
The data in the communications buffer (read buffer) is correct.

SYMBOL 117 \f "MSIcons" \s 9.5 \h
The host is no longer processing the Read Structured Fields (126) request.

Asynchronous Requests

When Read Structured Fields (126) is requested asynchronously (the A option in the data string), the application cannot assume:

SYMBOL 117 \f "MSIcons" \s 9.5 \h
The return code is correct.

SYMBOL 117 \f "MSIcons" \s 9.5 \h
The data in the communications buffer (read buffer) is correct.

SYMBOL 117 \f "MSIcons" \s 9.5 \h
The host is no longer processing the Read Structured Fields (126) request.

When requested asynchronously, WinHLLAPI returns the following:

SYMBOL 117 \f "MSIcons" \s 9.5 \h
A 16‑bit Request ID in positions 2-3 of the data string.

SYMBOL 117 \f "MSIcons" \s 9.5 \h
The address of a semaphore in positions 4 - 7 of the data string.

These are used to complete the asynchronous Read Structured Fields (126) call.

The following steps must be completed to determine the outcome of an asynchronous Read Structured Fields (126) function call:

SYMBOL 117 \f "MSIcons" \s 9.5 \h
If the WinHLLAPI return code is not zero, the request failed. No asynchronous request has been made. The application must take appropriate actions before attempting the call again.

SYMBOL 117 \f "MSIcons" \s 9.5 \h
If the return code is zero, the application should wait until the semaphore is cleared by using the Get Request Completion (125) function. The semaphore should not be freed (this done by the Get Request Completion (125) function) and should not be reused. The semaphore is only valid for the duration of the Read Structured Fields (126) function call through the completion of the Get Request Completion (125) function call.

SYMBOL 117 \f "MSIcons" \s 9.5 \h
Once the semaphore is cleared, use the returned 16‑bit Request ID as the Request ID parameter in a call to the Get Request Completion (125) function. The data string returned from the Get Request Completion (125) function call contains the final return code of the Read Structured Fields (126) function call.

Note

The communications subsystem allows for a maximum of 20 asynchronous requests per application to be outstanding. A return code for unavailable resources (RC= 11) is returned if more than 20 asynchronous requests are attempted.

Note

Structured fields are not supported by the COBOL programming language due to memory access problems inherent to the language.

Storage Manager—Function 17

This function allows your application elementary control of blocks of memory for use with the Windows HLLAPI function calls.

The Storage Manager (17) function allows easy migration of existing applications (typically BASIC interpreter applications) that use Storage Manager (17) functions. The new BASIC applications can use this function, but are not required to. The other supported languages may also use this function.

There are four available sub-functions to the Storage Manager (17) function:

SYMBOL 117 \f "MSIcons" \s 9.5 \h
Get Storage

SYMBOL 117 \f "MSIcons" \s 9.5 \h
Free Storage

SYMBOL 117 \f "MSIcons" \s 9.5 \h
Free All Storage

SYMBOL 117 \f "MSIcons" \s 9.5 \h
Query Free Storage

Each of the sub-functions has supplied parameters and returned parameters, and generates a set of possible return codes. These sub-functions are discussed in detail in the following pages.

WinHLLAPI returns a return code of WHLLPARAMETERERROR for an invalid sub-function number. The sub-functions are identified to WinHLLAPI by the sub-function number being placed in the PS Position calling parameter.

Storage Manager (17) may allocate blocks from 16 bytes to 64 Kbytes in size. The Storage Manager (17) function does not allocate shared memory.

WinHLLAPI lists the results of the Storage Manager (17) function and places them into a table. Once a request to Get Storage is placed into the table, WinHLLAPI checks the table for free bytes to satisfy the current request. If there is sufficient storage, the free block is marked allocated and is given to the user. If there is not sufficient storage, the user should take what steps are necessary to allocate the memory via normal operating system calls.

When a Free Storage call is made, the specified block is then marked as free in the table.

If a Free All Storage call is made, all blocks in the table are marked as free, and no more use may be made by the application of blocks previously acquired from Get Storage.

A Query Free Storage call returns the size of the single largest area that is currently available.

Prerequisite Functions

None.

Get Storage

The Get Storage sub-function allocates a block of storage to be used by the calling Windows HLLAPI application.

Function Call

WinHLLAPI(STORAGEMGR,lpbyString,lpwLength,GETSTORAGE)

Call Parameters

	Parameter
	Description

	

	Data String
	A 4-byte string.

	Data Length
	Size (in bytes) of the requested storage area.

	PS Position
	01 (GETSTORAGE)

Return Parameters

	Parameter
	Description

	

	Data String
	The storage address is expressed as two binary words: offset and selector. The offset first, then the selector.

	Data Length
	Storage Block ID of the requested storage area.

Return Codes

	Code
	Description

	

	WHLLOK
	The requested storage was allocated.

	WHLLBLOCKNOTAVAIL
	You requested more storage than is available.

	WHLLSYSERROR
	The function failed due to a system error. Any time results are unpredictable.

	WHLLNOTSUPPORTED
	The function was not supported by the emulation program.

Free Storage

The Free Storage sub-function frees the block of storage allocated by the Get Storage sub-function.

Function Call

WinHLLAPI(STORAGEMGR,lpbyString,lpwLength,FREESTORAGE)

Call Parameters

	Parameter
	Description

	

	Data String
	NA

	Data Length
	Storage Block ID of area to be freed.

	PS Position
	02 (FREESTORAGE)

Return Parameters

	Parameter
	Description

	

	WHLLOK
	The specified block was freed.

	WHLLNOTCONNECTED
	You requested more storage than is available.

	WHLLSYSERROR
	The function failed due to a system error. Any time results are unpredictable.

	WHLLNOTSUPPORTED
	The function was not supported by the emulation program.

Free All Storage

The Free All Storage sub-function frees all allocated blocks of storage.

Function Call

WinHLLAPI(STORAGEMGR,lpbyString,lpwLength,FREEALLSTORAGE)

Call Parameters

	Parameter
	Description

	

	Data String
	NA

	Data Length
	NA

	PS Position
	04 (FREEALLSTORAGE)

Return Parameters

	Parameter
	Description

	

	WHLLOK
	The function was successful. All blocks have been freed.

	WHLLSYSERROR
	The function failed due to a system error. Any time results are unpredictable.

	WHLLNOTSUPPORTED
	The function was not supported by the emulation program.

Query Free Storage

The Query Free Storage sub-function returns the size (in bytes) of the largest single available block of storage available to the calling Windows HLLAPI application. This value must be over 16 to be used by the Get Storage sub-function.

Function Call

WinHLLAPI(STORAGEMGR,lpbyString,lpwLength,

QUERYFREESTORAGE)
Call Parameters

	Parameter
	Description

	

	Data String
	NA

	Data Length
	NA

	PS Position
	03 (QUERYFREESTORAGE)

Return Parameters

	Parameter
	Description

	

	Data Length
	Size of the largest block available. (0xFFFF indicates a full 64 Kbytes)

Return Codes

	Code
	Description

	

	WHLLOK
	The Query was successful.

	WHLLSYSERROR
	The function failed due to a system error. Any time results are unpredictable.

	WHLLNOTSUPPORTED
	The function was not supported by the emulation program.

Write Structured Fields—Function 127

This function writes structured field data from the Windows HLLAPI application to the host application.

If the call specifies asynchronous (A), the application receives control as soon as the request has been successfully queued to the subsystem. If the call specifies synchronous (S), WinHLLAPI waits for the host to acknowledge receipt of data before returning control to the application

The application provides the buffer address from which data is sent to the host. The buffer must be obtained using the Allocate Communications Buffer (123) function call.

Prerequisite Functions

Connect Structured Fields (function 120).

Allocate Communications Buffer (function 123).

Function Call

WinHLLAPI(WRITESTRFLDS,lpbyString,lpwLength,lpwReturnnCode)
Call Parameters

	Parameter
	Description

	

	Data String
	An 8-byte string for synchronous, or a 14-byte string for asynchronous in the following format:

	
	Byte 1
	A 1-character session short name.

	
	Bytes 2
	A 1-character specifying the control option:

SYMBOL 117 \f "MSIcons" \s 9.5 \h
S (synchronous control) - control is not returned to the application until the read is satisfied.

SYMBOL 117 \f "MSIcons" \s 9.5 \h
A (asynchronous control) - control is returned immediately to the application.

	
	Bytes 3-4
	The 16‑bit word unique destination/origin ID returned by the Connect Structured Fields (120) function call.

	
	Bytes 5-8
	The 4-byte value of the buffer address into which the data is to be read. The buffer must be obtained using the Allocate Communications Buffer (123) function call.

	Data Length
	Must be 8 or 14.

	PS Position
	NA.

Return Parameters

	Parameter
	Description

	

	Data String
	When the A (asynchronous) control option is specified and the request is successfully completed, the following are returned:

	
	Bytes 9-10
	A 16‑bit value representing the destination/origin ID returned to the application by the emulator. This function request ID is used by the Get Request Completion (125) function to determine the status of this function call.

	
	Bytes 11-14
	A 4-byte value in which the semaphore address is returned by WINHLLAPI. The application may wait upon this semaphore. When the semaphore is cleared, the application must issue the Get Request Completion (125) function call.

Note

A semaphore address is returned for each successful asynchronous request. The semaphore should not be used again, A new semaphore is returned for each request and is valid for only the duration of that request.

Note

There is no returned data string for the S (synchronous) control option.

Return Codes

	Code
	Description

	

	WHLLOK
	The function was successful.

	WHLLNOTCONNECTED
	An invalid presentation space was specified, or was not connected or the DOID was incorrect.

	WHLLPARAMETERERROR
	An invalid option was specified.

	WHLLSYSERROR
	The function failed due to a system error.

	WHLLUNAVAILABLE
	The requested resource was not available.

	WHLLTRANCANCLI
	An inbound transmission to the host was canceled.

	WHLLTRANCANCL
	An outbound transmission from the host was canceled.

	WHLLHOSTCLOST
	Contact with the host was lost.

	WHLLOKDISABLED
	The function was successful. Warning: The host inbound transmission is disabled.

The application must correct the situation if one of the following return codes is specified:

	Code
	Description

	

	WHLLTRANCANCL
	Is returned if the first Read Structured Fields (126) or Write Structured Fields (127) is requested after an outbound transmission from the host is canceled.

	WHLLHOSTCLOST
	Which requires the application to disconnect from the communications subsystem and reconnect to establish communications with the host again.

	WHLLOKDISABLED
	Which is returned if the host is inbound disabled.

Remarks

When the call to Read Structured Fields (126) is complete, the Read Buffer, whose address was specified in positions 5-8 of the data string, will contain the structured fields received from the host application.

The format of the Read Buffer is as follows:

	Position
	Meaning

	

	Bytes 0-1
	A 16‑bit value - 0x0000.

	Bytes 2-3
	A 16‑bit value which contains the Message length (m), which is the number of bytes of data in the message not including the 8-byte message header. This value is returned by the subsystem.

	Bytes 4-5
	A 16‑bit value which contains the Buffer Size (n), which is the supplied length of the data buffer not including the 8-byte message header.

	Bytes 6-7
	A 16‑bit value - 0xC000

	Bytes 8-9
	A 16‑bit value which contains the Length of the first or only structured field message (not byte-reversed).

	Byte 10
	First non-length byte of the structured field message.

	Byte m
	Last byte in the structured field message.

Bytes 0-7 are the buffer header, which is passed to and used by the communications subsystem. The application must prepare the buffer header before using it in the structured fields call. The word at position 0 must be set to a value of zero. The length of the buffer, requested with the Allocate Communications Buffer (123) function, must be in the word at position 4. The word at position 6 must be set to 0xC000.

Bytes 8-m are where the structured field messages are returned. The following occurs when the call is returned:

SYMBOL 117 \f "MSIcons" \s 9.5 \h
The word at position 2 contains the length (8-m) of the structured field messages.

SYMBOL 117 \f "MSIcons" \s 9.5 \h
The word at position 8 contains the length of the first structured field message.

SYMBOL 117 \f "MSIcons" \s 9.5 \h
Bytes 10-m contain the actual data of the structured field message.

Synchronous Requests

When Write Structured Fields (127) is requested synchronously (the S option in the data string), control is returned to the application only after the request is satisfied. The application can assume:

SYMBOL 117 \f "MSIcons" \s 9.5 \h
The return code is correct.

SYMBOL 117 \f "MSIcons" \s 9.5 \h
The data in the communications buffer (read buffer) is correct.

SYMBOL 117 \f "MSIcons" \s 9.5 \h
The host is no longer processing the Write Structured Fields (127) request.

Asynchronous Requests

When Write Structured Fields (127) is requested asynchronously (the A option in the data string), the application cannot assume:

SYMBOL 117 \f "MSIcons" \s 9.5 \h
The return code is correct.

SYMBOL 117 \f "MSIcons" \s 9.5 \h
The data in the communications buffer (read buffer) is correct.

SYMBOL 117 \f "MSIcons" \s 9.5 \h
The host is no longer processing the Write Structured Fields (127) request.

When requested asynchronously, WinHLLAPI returns the following:

SYMBOL 117 \f "MSIcons" \s 9.5 \h
A 16‑bit Request ID in positions 2-3 of the data string.

SYMBOL 117 \f "MSIcons" \s 9.5 \h
The address of a semaphore in positions 4 - 7 of the data string.

These are used to complete the asynchronous Write Structured Fields (127) call.

The following steps must be completed to determine the outcome of an asynchronous Write Structured Fields (127) function call:

SYMBOL 117 \f "MSIcons" \s 9.5 \h
If the WinHLLAPI return code is not zero, the request failed. No asynchronous request has been made. The application must take appropriate actions before attempting the call again.

SYMBOL 117 \f "MSIcons" \s 9.5 \h
If the return code is zero, the application should wait until the semaphore is cleared by using the Get Request Completion (125) function. The semaphore should not be freed (this done by the Get Request Completion (125) function) and should not be reused. The semaphore is only valid for the duration of the Read Structured Fields (126) function call through the completion of the Get Request Completion (125) function call.

SYMBOL 117 \f "MSIcons" \s 9.5 \h
Once the semaphore is cleared, use the returned 16‑bit Request ID as the Request ID parameter in a call to the Get Request Completion (125) function. The data string returned from the Get Request Completion (125) function call contains the final return code of the Write Structured Fields (127) function call.

Note

The communications subsystem allows for a maximum of 20 asynchronous requests per application to be outstanding. A return code for unavailable resources (RC= 11) is returned if more than 20 asynchronous requests are attempted.

Note

Structured fields are not supported by the COBOL programming language due to memory access problems inherent to the language.

Appendix D
Query Reply Data Structures for Windows HLLAPI

This appendix lists and defines the query reply structures supported by the Windows HLLAPI structured field interface. See the IBM 3270 Information Display System Data Stream Programmer’s Guide for additional information on Query Reply Data Structures.

1.
WinHLLAPI must scan the query reply buffers to locate the destination/origin ID (DOID) self-defining parameter (SDP) for the structured field support to work and be reliable. The DOID field is then filled in with the assigned ID.

2.
The application should build the query reply data structures in the application’s private memory.

3.
Only cursory checking is performed on the query reply data. Only the ID and the length of the structure are checked for validity.

4.
The 2-byte length field at the beginning of each query reply is not byte-reversed.

5.
Only one distributed data management (DDM) base-type connection is allowed per host session. If the DDM connection supports the SDP for the DOID, then multiple connections are allowed.

6.
If a nonzero return code is received indicating that an application is already connected to the selected session (RC 32 or 39), use of that presentation space should be with caution. Conflicts file transfer and other Windows HLLAPI applications may result.

The DDM Query Reply

Several DDM query reply formats will be supported. Some of these formats are listed below:

Table D-l. DDM Query Reply Base Formattc "D-l. DDM Query Reply Base Format"\f t
	

	Offset
	Length
	Content
	Meaning

	

	0
	1 word
	Length
	Length of Structure

	2
	1 byte
	0x81
	Query Reply ID

	3
	1 byte
	0x95
	Query Reply Type

	4-5
	2 bytes
	FLAGS
	Reserved

	6-7
	2 bytes
	LIMIN
	Maximum DDM bytes allowed in inbound transmission

	8-9
	2 bytes
	LIMOUT
	Maximum DDM bytes allowed in outbound transmission

	10
	1 byte
	NSS
	Number of subsets identifier

	11
	1 byte
	DDMSS
	DDM subset identifier

DDM Application Name Self-Defining Parameter

The DDM Application Name self-defining parameter provides the host application with the name of the application containing control of the DDM Auxiliary Device. The controlling application is identified by the DOID in the Direct Access self-defining parameter.

This SDP is optional, but it is necessary if a host application is to identify distinct DDM auxiliary devices when more than one application is in existence at a remote workstation.

Table D-2. DDM Application Name SDPtc "D-2. DDM Application Name SDP"\f t
	

	Offset
	Length
	Content
	Meaning

	

	0
	1 byte
	Length
	Parameter Length

	1
	1 byte
	0x02
	DDM Application Name

	2-n
	n-2 bytes
	NAME
	Name of Remote Application Program

NAME: The name consists of 8 characters or less and is the means by which a host application may relate to an application in a remote workstation. It is the responsibility of the host and remote application users to ensure that the name is understood by the applications at each end.

PCLK Protocol Controls Self-Defining Parameter

The PCLK (PC link) Protocol Controls self-defining parameter indicates that the PCLK Protocol Controls structured field, ID = X'1013', can be used both inbound and outbound in data streams destined to or from the DDM auxiliary device processor.

Table D-3. DDM PCLK Auxiliary Device SDP

	

	Offset
	Length
	Content
	Meaning

	

	0
	1 byte
	0x04
	Parameter Length

	1
	1 byte
	0x03
	PCLK Protocol Controls

	2-n
	n-2 bytes
	VERS
	Protocol Version

VERS: The value given in VERS is used to indicate the version of PCLK installed in the terminal at the time the query reply is returned. For example, 0x0001 indicates PCLK version 1.1.

See the IBM 3270 Information Display System Data Stream Programmer’s Reference for the field definitions for this query reply.

Base DDM Query Reply Formats

The following query reply formats are examples of some of the Base + SDP combinations possible. Not all of the combinations are shown.

Table D-4. Base DDM Query Reply Format with Name and Direct Access SDPs

	

	Offset
	Length
	Content
	Meaning

	

	0
	1 word
	Length
	Length of structure (includes SDPs)

	2
	1 byte
	0x81
	Query Reply ID

	3
	1 byte
	0x95
	Query Reply Type

	4-5
	2 bytes
	FLAGS
	Reserved

	6-7
	2 bytes
	LIMIN
	Maximum DDM bytes allowed in inbound transmission

	8-9
	2 bytes
	LIMOUT
	Maximum DDM bytes allowed in outbound transmission

	10
	1 byte
	NSS
	Number of subsets supported

	11
	1 byte
	DDMSS
	DDM subset identifier

	12
	1 byte
	Length (n+2)
	Parameter Length

	13
	1 byte
	0x02
	DDM Application Name

Table D-4. Base DDM Query Reply Format with Name and Direct Access SDPs (continued)

	

	Offset
	Length
	Content
	Meaning

	

	14 -(13+n)
	n bytes
	Name
	Name of the Remote Application Program

	14 + n
	1 byte
	0x04
	Parameter Length

	15 + n
	1 byte
	0x01
	Direct Access ID

	16+n - 17+n
	n-2 bytes
	VERS
	Destination/Origin ID assigned by the subsystem

The SDPs begin at offsets 12 and (14 + n) where “n” is the length of the application name supplied at offset 14.

See the IBM 3270 Information Display System Data Stream Programmer’s Reference for the field definitions for this query reply.

Table D-5. Base DDM Query Reply Format with Direct Access and Name SDPs

	

	Offset
	Length
	Content
	Meaning

	

	0
	1 word
	Length
	Length of structure (includes SDPs)

	2
	1 byte
	0x81
	Query Reply ID

	3
	1 byte
	0x95
	Query Reply Type

	4-5
	2 bytes
	FLAGS
	Reserved

	6-7
	2 bytes
	LIMIN
	Maximum DDM bytes allowed in inbound transmission

	8-9
	2 bytes
	LIMOUT
	Maximum DDM bytes allowed in outbound transmission

	10
	1 byte
	NSS
	Number of subsets supported

	11
	1 byte
	DDMSS
	DDM subset identifier

	12
	1 byte
	0x04
	Parameter Length

	13
	1 byte
	0x01
	Direct Access ID

	14-15
	2 bytes
	DOID
	Destination/Origin ID assigned by the subsystem

	16
	1 byte
	Length (n+2)
	Parameter Length

	17
	1 byte
	0x02
	Direct Access ID

	16+n - 17+n
	n bytes
	Name
	Name of the Remote Application Program

The SDPs begin at offsets 12 and 16.

See the IBM 3270 Information Display System Data Stream Programmer’s Reference for the field definitions for this query reply.

The IBM Auxiliary Device Query Reply

The Auxiliary Device Query Reply is used to indicate to the host application the support of an IBM auxiliary device, which uses a data stream defined by IBM. See the IBM 3270 Data Stream Programmer’s Reference Manual for more information.

When the function is supported, the query reply is transmitted inbound in reply to a Read Partition structured field specifying Query or Query List (QCODE List = 0x9E, Equivalent, or All).

When a workstation supports multiple auxiliary devices, the IBM Auxiliary Device Query Reply must be sent for each of the devices.

Optional Parameters: All parameters shown in the base part of the query reply must be present. Parameters not used are set to 0x100. At least one self-defining parameter must be present.

Table D-6. IBM Auxiliary Device Base Format with Direct Access SDP

	

	Offset
	Length
	Content
	Meaning

	

	0
	1 word
	Length
	Length of structure (includes SDPs)

	2
	1 byte
	0x81
	Query Reply ID

	3
	1 byte
	0x9E
	IBM Auxiliary Device Query Reply

	4
	1 byte
	Bit 0
	

	Bits 1-7
	FLAGS
	QUERY Binary 1
	

	RES
	Reserved
	Read Part (Query, Query List)
	IBM Auxiliary device supports Query

	Reserved, must be binary 0’s
	5
	1 byte
	FLAGS

	Reserved
	6-7
	2 bytes
	LIMIN

	Maximum DDM bytes allowed in inbound transmission
	8-9
	2 bytes
	LIMOUT

	Maximum DDM bytes allowed in outbound transmission
	10
	1 byte
	TYPE

Table D-6. IBM Auxiliary Device Base Format with Direct Access SDP (continued)

	

	Offset
	Length
	Content
	Meaning

	

	0x01
	0x02
	Others
	Type of auxiliary device supported

	IBM auxiliary device display
	IBM auxiliary device printer
	Reserved
	11

	1 byte
	0x04
	Parameter Length
	12

	1 byte
	0x01
	Direct Access
	13-14

	1 word
	DOID
	Destination/Origin ID assigned by the subsystem
	

QUERY

This bit must be set to Binary 1 for all IBM auxiliary devices to indicate that it supports receiving a Read Partition (Query, Query List). The host application may then use a Read Partition directed to the auxiliary device to determine its characteristics. The destination/origin structured field is used to direct the Read Partition structured field to the auxiliary device.

The minimum support level for the IBM auxiliary device is to return the Null Query Reply in response to the Read Partition.

LIMIN

States the maximum number of bytes that can be sent in an inbound transmission. A LIMIN value of X'0000' indicates no implementation limit on the number of bytes transmitted inbound.

LIMOUT

States the maximum number of bytes that can be sent to the IBM auxiliary device in an outbound transmission. A LIMOUT value of 0x0000 indicates no implementation limit on the number of bytes transmitted outbound.

TYPE

Identifies the auxiliary device being supported. Two values are valid. One identifies an auxiliary display and the other identifies an auxiliary printer. All other values are reserved.

The IBM auxiliary device processor supports two Self-Defining Parameters, 01 and 03. These are defined in Table D-7.

Direct Access Self-Defining Parameter

This self-defining parameter provides the ID for use in the destination/origin structured field in the direct access of the IBM auxiliary device.

This SDP is always required to accompany the base query reply.

Table D-7. IBM Auxiliary Device Direct Access SDP

	

	Offset
	Length
	Content
	Meaning

	

	0
	1 byte
	0x04
	Parameter Length

	1
	1 byte
	0x03
	PCLK Protocol Controls

	2-3
	2 bytes
	DOID
	Destination/Origin ID

DOID: The value in these bytes is used in the ID field of the destination/origin structured field to identify the auxiliary device as the destination or origin of the data which follows.

PCLK Protocol Controls Self-Defining Parameter

The presence of the PCLK Protocol Controls self-defining parameter indicates that the PCLK Protocol Controls structured field, ID = 0x1013, can be used both inbound and outbound in data streams destined to or from the IBM auxiliary device processor.

Table D-8. IBM Auxiliary Device PCLK SDP

	

	Offset
	Length
	Content
	Meaning

	

	0
	1 byte
	0x04
	Parameter Length

	1
	1 byte
	0x03
	PCLK Protocol Controls

	2-3
	2 bytes
	VERS
	Protocol Version

VERS: The value given in VERS is used to indicate the version of PCLK installed in the terminal at the time the query reply is returned. For example, 0x000l indicates PCLK version 1.1.

See the IBM 3270 Information Display System Data Stream Programmer’s Reference for the field definitions for this query reply.

The OEM Auxiliary Device Query Reply

The OEM Auxiliary Device Query Reply format is as follows:

Table D-9. OEM Auxiliary Device Base Format with Direct Access SDP

	

	Offset
	Length
	Content
	Meaning

	

	0
	1 word
	0x001A
	Length of structure (includes SDPs)

	2
	1 byte
	0x81
	Query Reply ID

	3
	1 byte
	0x8F
	OEM Query Reply

	4-5
	2 bytes
	FLAGS
	Reserved

	6-13
	4 words
	DTYPE
	Device Type

	14-21
	4 words
	UNAME
	User assigned name

	22
	1 byte
	0x04
	Parameter Length

	23
	1 byte
	0x01
	Direct Access

	24-25
	1 word
	DOID
	Destination/Origin ID assigned by the subsystem

See the IBM 3270 Information Display System Data Stream Programmer’s Reference for the field definitions for this query reply.

The OEM auxiliary device processor supports two Self-Defining Parameters, 01 and 03. These are defined in Table D-10.

Direct Access Self-Defining Parameter

This self-defining parameter provides the ID for use in the destination/origin structured field in the direct access of the OEM auxiliary device.

This SDP is always required to accompany the base query reply.

Table D-10. OEM Auxiliary Device Direct Access SDP

	

	Offset
	Length
	Content
	Meaning

	

	0
	1 byte
	0x04
	Parameter Length

	1
	1 byte
	0x01
	Direct Access ID

	2-3
	2 bytes
	DOID
	Destination/Origin ID

DOID: The value in these bytes is used in the ID field of the destination/origin structured field to identify the auxiliary device as the destination or origin of the data which follows.

PCLK Protocol Controls Self-Defining Parameter

The presence of the PCLK Protocol Controls self-defining parameter indicates that the PCLK Protocol Controls structured field, ID = 0x1013, can be used both inbound and outbound in data streams destined to or from the IBM auxiliary device processor.

Table D-ll. OEM Auxiliary Device PCLK SDP

	

	Offset
	Length
	Content
	Meaning

	

	0
	1 byte
	0x04
	Parameter Length

	1
	1 byte
	0x03
	PCLK Protocol Controls

	2-3
	2 bytes
	VERS
	Protocol Version

VERS: The value given in VERS is used to indicate the version of PCLK installed in the terminal at the time the query reply is returned. For example, 0x000l indicates PCLK version 1.1.

The Cooperative Processing Requester Query Reply

The Cooperative Processing Requester query reply is also called the SRPI query reply or the CPSI query reply. The format is as follows:

Table D-12. CPR Query Reply Buffer Format

	

	Offset
	Length
	Content
	Meaning

	

	0
	1 word
	Length
	Length of structure (includes SDPs)

	2
	1 byte
	0x81
	Query Reply ID

	3
	1 byte
	0xAB
	Query Reply Type

	4-5
	2 bytes
	FLAGS
	Reserved

	6-7
	1 word
	LIMIN
	Maximum number bytes allowed in inbound transmission

	8-9
	1 word
	LIMOUT
	Maximum number bytes allowed in outbound transmission

	10
	1 byte
	FEATL
	Length in bytes of the following feature information

	11-12
	1 word
	FEATS
	CPR Length and feature flags

	13 to (N*2)+12
	0-2 bytes
	FEATSs
	Additional flags

	(N*2)+12
	1 byte
	0x04
	Length of DOID SDP

	(N*2)+13
	1 byte
	0x01
	Type for Destination/Origin ID

	(N*2)+14
	1 word
	DOID
	Destination/Origin ID assigned by the subsystem

See the IBM 3270 Information Display System Data Stream Programmer’s Reference for the field definitions for this query reply.

The Product Defined Query Reply

This query reply is used by IBM products using registered subidentifiers within the X ' 9C ' data structure. The Product Defined Data Stream query reply indicates support of a 3270DS workstation auxiliary device which uses an IBM product defined data stream. The data stream is not defined by a format architecture document having an identifiable control point such as an architecture review board.

When an auxiliary device supports an IBM product defined data stream, this query reply is transmitted inbound in reply to a Query List (QCODE List = 0x9C or All).

Optional Parameters: All parameters shown in the base part of the query reply and the Direct Access self-defining parameter must be present.

The format of the Product Defined query reply is as follows:

Table D-13. IBM Product Defined Query Reply Base Format

	

	Offset
	Length
	Content
	Meaning

	

	0
	1 word
	Length
	Length of structure (includes SDPs)

	2
	1 byte
	0x81
	Query Reply ID

	3
	1 byte
	0x9C
	IBM Product Defined Data Stream

	4-5
	2 bytes
	FLAGS
	Reserved

	6
	1 byte
	REFID
	Reference Identifier

	7
	1 byte
	SSID
	Subset Identifier

	8
	1 byte
	0x04
	Parameter Length

	9
	1 byte
	0x01
	Direct Access

	10-11
	1 word
	DOID
	Destination/Origin ID assigned by the subsystem

Valid values for REFID (offset 6) and SSID (offset 7) of the Product Defined query reply are as follows:

Table D-14. IBM Product Defined Query Reply Base Format

	

	REFID
	SSID
	Product and Data Stream Documentation

	

	0x01
	
	5080 Graphics System:

This reference ID indicates the 5080 Graphics System data stream is supported by the auxiliary device. Descriptions of the 5080 Graphics Architecture, structured fields, subset IDs, DOID and associated function sets, are defined in the following:

IBM 5080 Graphics System Principles of Operation

	
	0x001
	5080 HGFD Graphics Subset

	
	0x002
	5080 RS232 Ports Subset

	0x02
	
	WHIP API (replaced by SRL name when written)

	
	
	This reference ID indicates that the WHIP API data stream is supported by the auxiliary device. A description of the WHIP API architecture is defined in the following:

IBM RT PC Workstation Host Interface Program Version 1.1 User's Guide and Reference Manual

	
	0x001
	WHIP Subset 1

	0x03 to 0xFF
	
	All other values are reserved

The IBM Product Defined processor supports only the Direct Access Self-Defining Parameter. It is defined in Table D-15.

Direct Access Self-Defining Parameter

The presence of the Direct Access ID self defining parameter indicates the auxiliary device may be accessed directly by using the destination/origin structured field. When multiple auxiliary devices are supported which use a product defined data stream, separate Product Defined Data Stream query replies must be provided, each of which has a unique DOID.

Table D-15. IBM Product Defined Direct Access SDP

	

	Offset
	Length
	Content
	Meaning

	

	0
	1 byte
	0x04
	Parameter Length

	1
	1 byte
	0x03
	PCLK Protocol Controls

	2-3
	2 bytes
	DOID
	Destination/Origin ID

DOID: The value in these bytes is used in the ID field of the destination/origin structured field to identify the auxiliary device as the destination or origin of the data which follows.

The Document Interchange Architecture Query Reply

This query reply indicates the Document Interchange Architecture (DIA) function sets supported. The format of the DIA Query Reply is as follows:

Table D-16. IBM DIA Base Format

	

	Offset
	Length
	Content
	Meaning

	

	0
	1 word
	Length
	Length of structure (includes SDPs)

	2
	1 byte
	0x81
	Query Reply ID

	3
	1 byte
	0x97
	IBM Product Defined Data Stream

	4-5
	2 bytes
	FLAGS
	Reserved

	6-7
	2 bytes
	LIMIN
	Maximum message bytes allowed in inbound transmission

	8-9
	2 bytes
	LIMOUT
	Maximum message bytes allowed in outbound transmission

	10
	1 byte
	NFS
	Number of 3-byte function set ID's which follow

	11-13
	3 bytes
	DIAFS
	DIA function set identifier

	14 - (13+(N*3))
	N*3 bytes
	DIAFSs
	Additional DIA function set ID's

	14+(N*3)
	1 byte
	0x04
	Parameter Length

	15+(N*3)
	1 byte
	0x01
	Direct Access

	16+(N*3)
	1 word
	DOID
	Destination/Origin ID assigned by the subsystem

The DIA auxiliary device processor supports only the Direct Access Self-Defining Parameter. It is defined in Table D-17.

Direct Access Self-Defining Parameter

The presence of the Direct Access ID self defining parameter indicates the auxiliary device may be accessed directly by using the destination/origin structured field.

Table D-17. DIA Auxiliary Device Direct Access SDP

	Offset
	Length
	Content
	Meaning

	

	0
	1 byte
	0x04
	Parameter Length

	1
	1 byte
	0x01
	Direct Access ID

	2-3
	2 bytes
	DOID
	Destination/Origin ID

DOID: The value in these bytes is used in the ID field of the destination/origin structured field to identify the auxiliary device as the destination or origin of the data which follows.

See the IBM 3270 Information Display System Data Stream Programmer's Reference for the field definitions for this query reply.

/ndf{1 index where{pop pop pop}{dup xcheck{bind}if def} ifelse}bind def

/ed{exch def}bind def

/SetPageOffset{neg wp$y add/dTop ed/dLeft ed}ndf

/SetPageSize {neg dTop add/dBot ed dLeft add/dRight ed}ndf

/DoCropMarks{gsave 0 setgray /dopaint true def 0.25 setlinewidth

 dLeft 76 sub dTop moveto 72 0 rlineto dLeft 76 sub dBot moveto 72 0 rlineto

 dRight 4 add dTop moveto 72 0 rlineto dRight 4 add dBot moveto 72 0 rlineto

 dLeft dTop 76 add moveto 0 -72 rlineto dRight dTop 76 add moveto 0 -72 rlineto

 dLeft dBot 4 sub moveto 0 -72 rlineto dRight dBot 4 sub moveto 0 -72 rlineto

 stroke grestore}ndf

/DoPageBox {gsave 0 setgray /dopaint true def 0.25 setlinewidth

 dLeft dTop moveto dRight dTop lineto dRight dBot lineto dLeft dBot lineto

 closepath stroke grestore}ndf

40.5 72 SetPageOffset

531 648 SetPageSize

DoCropMarks

DoPageBox"

0 setgray /dopaint true def 2 2 moveto

/str 30 string def /Times-Roman findfont 5 scalefont setfont

(Printed On:) show statusdict begin product show end

(Colorlayer:) show /colorlayer where {pop colorlayer str cvs show}{(?) show}ifelse

(Document Page:) show wp$fpage show"
!Unexpected End of Expression

/ndf{1 index where{pop pop pop}{dup xcheck{bind}if def} ifelse}bind def

/ed{exch def}bind def

/SetPageOffset{neg wp$y add/dTop ed/dLeft ed}ndf

/SetPageSize {neg dTop add/dBot ed dLeft add/dRight ed}ndf

/DoCropMarks{gsave 0 setgray /dopaint true def 0.25 setlinewidth

 dLeft 76 sub dTop moveto 72 0 rlineto dLeft 76 sub dBot moveto 72 0 rlineto

 dRight 4 add dTop moveto 72 0 rlineto dRight 4 add dBot moveto 72 0 rlineto

 dLeft dTop 76 add moveto 0 -72 rlineto dRight dTop 76 add moveto 0 -72 rlineto

 dLeft dBot 4 sub moveto 0 -72 rlineto dRight dBot 4 sub moveto 0 -72 rlineto

 stroke grestore}ndf

/DoPageBox {gsave 0 setgray /dopaint true def 0.25 setlinewidth

 dLeft dTop moveto dRight dTop lineto dRight dBot lineto dLeft dBot lineto

 closepath stroke grestore}ndf

40.5 72 SetPageOffset

531 648 SetPageSize

DoCropMarks

DoPageBox"

0 setgray /dopaint true def 2 2 moveto

/str 30 string def /Times-Roman findfont 5 scalefont setfont

(Printed On:) show statusdict begin product show end

(Colorlayer:) show /colorlayer where {pop colorlayer str cvs show}{(?) show}ifelse

(Document Page:) show wp$fpage show"
!Unexpected End of Expression

/ndf{1 index where{pop pop pop}{dup xcheck{bind}if def} ifelse}bind def

/ed{exch def}bind def

/SetPageOffset{neg wp$y add/dTop ed/dLeft ed}ndf

/SetPageSize {neg dTop add/dBot ed dLeft add/dRight ed}ndf

/DoCropMarks{gsave 0 setgray /dopaint true def 0.25 setlinewidth

 dLeft 76 sub dTop moveto 72 0 rlineto dLeft 76 sub dBot moveto 72 0 rlineto

 dRight 4 add dTop moveto 72 0 rlineto dRight 4 add dBot moveto 72 0 rlineto

 dLeft dTop 76 add moveto 0 -72 rlineto dRight dTop 76 add moveto 0 -72 rlineto

 dLeft dBot 4 sub moveto 0 -72 rlineto dRight dBot 4 sub moveto 0 -72 rlineto

 stroke grestore}ndf

/DoPageBox {gsave 0 setgray /dopaint true def 0.25 setlinewidth

 dLeft dTop moveto dRight dTop lineto dRight dBot lineto dLeft dBot lineto

 closepath stroke grestore}ndf

40.5 72 SetPageOffset

531 648 SetPageSize

DoCropMarks

DoPageBox"

0 setgray /dopaint true def 2 2 moveto

/str 30 string def /Times-Roman findfont 5 scalefont setfont

(Printed On:) show statusdict begin product show end

(Colorlayer:) show /colorlayer where {pop colorlayer str cvs show}{(?) show}ifelse

(Document Page:) show wp$fpage show"
!Unexpected End of Expression

